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Properties of Fluids

L1 INTRODUCTION

Fluid mechanics is that branch of science which deals with the behaviour of the fluids (liquids or gases)
al rest as well as in motion, Thus this branch of science deals with the static, kinematics and dynamic aspects
of fluids. The study of fluids at rest is called fuid statics. The study of fluids in motion, where pressure forces
are not considered, is called fuid kinematics and if the pressure forces are also considered for the fluids in
motion, that branch of science is called fluid dynamics.

1.2. PROPERTIES OF FLUIDS

1.2.1. Density or Mass Density. Density or mass density of a fluid is defined as the ratio of the mass
of a fluid to its volume. Thus mass per unit volume of a fluid is called density. It is denoted the symbol p (rho).
The unit of mass density in SI unit is kg per cubic metre, i.e. k. The density of liguids may be considered
as constant while that of gases changes with the variation of pressure and temperature.

Mathematically, mass density is written as

_ _Mass of fuid
P= Volume of fluid -

The value of density for water is 1 gm/em® or 1000 kg/m’,

1.2.2. Specific Weight or Weight Density. Specific weight or weight density of a fluid is the ratio
between the weight of a fluid to its valume. Thus weight per unit volume of o fluid is called weight density

and it is denoted by the symbol w.

o Weight of fluid _ (Mass of fluid) x Acceleration due 10 gravity
Volume of {Tuid Volume of Muid

_ Mass of fluid = g

"~ Volume of fluid

Thus mathematically,

=p!g

.. Mass of fluid =
" Volume of fuid "}

w=pg (1.1)
The value of specific weight or weight density (w) for water is 9.81 x 1000 Newton/m?® in S1 units.

1.2.3. Specific Volume. Specific volume of a fluid is defined as the volume of a fluid occupied by a
unit mass or volume per wnit mass of a Quid is called Sp:-L‘iﬁt volume. Mthl.:miIlil.!Hll}f, il is expressed as

- _ Volume of a fluid _ 1 _1
pecific volume T Massof luid — Mass of luid  p
Volume

Thus specific volume is the reciprocal of mass density. Itis expressed as m*/kg. Itis commonly applied
0 gases,
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1.2.4. Specific Gravi . R io of the weight density (or density) of 4
: ty. Specific gravity is defined as the ratio © . \

the weight density (or density) of a stapdard fluid. For liquids, the sundard fuid i taken watcr ang

gases, the standard fluid is taken air. Specific gravity is also called relative density. 11 is dimensionles,

Quantity and is denoted by the symbal S, :

Muid to
for

Weight density (density) of liguid
Weight density (density) of water
Weight density (de nsity) of gas
Thus e et Weight density (density) of air
Bht density of a liquid = § x Weight density of watcr
= 5 x 1000 x 9.81 N/m’

I'y'[nthnmnli:all}r. S(for iquids) =

The density of 5 liguid = 5§ x Density of water
= § x 1000 kg/m’. 11 A)

weighs yeplem L.1. Calculate the specifc weight, density and specific graviy of ome ire of a s whic

Sol. Given :

Volume -1 H,,”ﬁms ( T u:un m* or | litre = 1000 em’

Weight =TN.

(1) Specific weight (w) = ::'r:' E -:L = 7000 N/m'.  Ans.

alume ( ]mt
10D
. 7O
(17) Density (p) = E = ﬁl'. km' = TI3.5 kgm'. Ans.

_ Density of liquid _ 713.5

(41f) Specific gravity = Density of water -~ 1000 { Density of water = HHH) kp'm')
=0.T135. Ans.
Problem 1.2. Calculate the density, specific weight und weight of one litre of petrol of specific graviy
=0.7.
Sol. Given
Volume = ] litre
y 1000,
=] = 1 em” = ITII"'_ wm = i mt
Sp. gravity, 5=0.7
() Density (p)
Using equation (1.1 A),
Density () =5 x 1000 kg/m” = 0.7 x 1006 = 700 k' Ans.
(if) Specific weight (w) ]
Using equation (1.1), w=pxg
=700 = 9.81 N/m" = 6867 N/m'.  Ano.
(iif) Weight (W)

Weirht

We know that  specilic weight = Volume



W W
or . [ e
”'nml or G6B6T = 0.001

W=06867 x 0.001 = 6.867 N. Ans.
1.3, VISCOSITY

Viscosity is defined as the property of a fluid which offers resistance o the movement of one layer of
fluid over another adjacent layer of the fluid. When two
layers of a fluid, a distance ‘dy’ apart, move one over
the other at different velocities, say u and u + du as
shown in Fig. 1.1, the viscosity together with relative

velocity causes a shear stress acting between the fluid
layers.

The top layer causes a shear stress on the ad-
jacent lower layer while the lower layer causes a shear
stress on the adjacent top layer. This shear stress is
proportional to the rate of change of velocity with Fig. 1.1. Velocity variation near a solid boundary.
respect to y. It is denoted by symbol t called Tau.

Mathematically, TE ==

or e ~(1.2)
where p (called mu) is the constant of proportionality and is known as the co-efficient of dynamic viscosity
or only viscosity. % represents the rate of shear strain or rate of shear deformation or velocity gradient.

T

(5]

* Thus viscosity is also defined as the shear stress required to produce unit rate of shear strain.

1.3.1. Units of Viscosity. The units of viscosity is obtained by putting the dimensions of the quantities
_ in equation (1.3)

From equation (1.2), we have -(1.3)

- _ __ Shearstress
"= Change of velocity
Change of distance [
_ Force/(length)®  Force x Ti
. 1 (Length)? |
Time

In MKS system, force is represented by kgf and length by metre (m), in CGS system, force is
represented by dyne and length by cm and in 51 system force is represented by Newton (N) and length by
metre (m).

MEKS. unit of viscosity = Eiﬁﬂ
’ dyne-sec
CGS unit of viscosity = —sz—



Newton-sec 9 Ns
m? m*

S1 unit of viscosity &

e

The unit of viscosity in CGS is also called Poise which is equal to EEIE

cm
The numerical conversion of the unit of viscosity from MKS unit to CGS unit is given below :
one !E[I'Hﬂ=g.ﬂ1 P:ﬂ {-_. EtEII':-g._ﬂj _'l."tm}
m m
But one Newton =un:kg[mus]rﬂn:[iz']flmdﬂ!ﬁm]
(1000 gm) x (100 cm) gmcm
= = IIII l
sec’ . sec”
= 1000 x 100 d v dyne =gmx 5
e i
; one kgfsee _ g o1 . 100000 LYREEEE - 9,81 x 100000 — R
m* m 100 x 100 x cm™
= 08,1 LLEEEEC _ gg 1 Poise { i“‘—'?—“i—-vnml
IZ'I!!2 cm” )

Thus for solving numerical problems, if viscosity is given in poise, it must be divided by 9.1 1o gel
its equivalent numerical value in MKS.

98
But m:lg:ﬁn ':Ifs=93.]pniﬂ:
one Ns 981 . : .. 1 Ns
YT poise = 10 poise or ﬂanms-:—mm;.
; _dynexs (1gmx]cm 5
Alternate Method. One Poise = i 2 =3
lcm
But dyne =1gm= 2
odg
'D“-EPniS'I: __._:I_E:w
f s cm 3—1-m
100
e £ kg 1 kg R AE——
-Iﬂﬂﬂxlmsm 10 sm 2o I!m-lﬂpmu:-

Note. (1) [n SI units second is represented by ‘s" and not by “sec”.
Ifﬂlfﬂmitfiﬁﬂ?ﬂ‘i]!lpﬁﬂﬂ.Hml.l.“hﬂdivutdh?1ﬂ|ﬂgﬂhﬁmmlmlwmhs[m
Sometimes a unit of viscosity as centipoise is used where

| 1 - 2
1 centipoise = T poise  Of IBPIEEP [¢P = Centipoise, P = Poise|

The viscosity of water at 20°C is 0.01 poise or 1.0 centipoise. |
1.3.2. Kinematic Viscosity. It is defined as the ratio between the dynamic viscosity and density of
fluid. It is denoted by the Greek symbol (v) called ‘nu’. Thus, mathematically,



_ Viscosity _ ol 1.4)
Density p

The units of kinematic viscosity is obtained as
_ Unitsofp _ _ Force x Time  _ Force x Time
"~ Unitsofp 3 Mass Mass
Length
gty engthy  Lengih

Mass x "—;'IEE%K Time ** Force = Mass x Acc.
me ot
= [ ] = Mass x ~englh

Lti:;:h Time?

_ (Length)’

Time

In MKS and S, the unit of kinematic viscosity is metre?/sec or m*/sec while in CGS units it is written
as cm%s. In CGS units, kinematic viscosity is also known stoke,

Thus, one stoke = cmls = [—l"m-—] mifs = 107 m?s
Cl:nlish_:lll:n Mmeans = -I-'Iﬁ stoke.

1.3.3. Newton's Law of Viscosity. It states that the shear stress (t) on a Muid element layer is directly
proportional to the rate of shear strain. The constant of pmpnnmnnin:.r is called the co-elficient of viscosity.
Mathematically, it is expressed as given by equation (1.2) or as

Fluids which obey the above relation are known as Newtonian (luids and the fluids which do not obey
the above relation are called Non-newtonian fluids.

1.3.4. Variation of Viscosity with Temperature. Temperature affects the viscosity. The viscosily of
liquids decreases with the increase of temperature while the viscosity of gases increases with the increase of
temperature. This is due to reason that in liguids the cohesive forces predominates the molecular momentum
transfer, due to closely packed molecules and with the increase in temperature, the cohesive forces decreases
with the result of decreasing viscosity. Butl in case ol gases the cobesive force are small and molecular
momentum transfer predominates. With the increase in temperature, molecular momentum transfer increases
and hence viscosity increases, The relation between viscosity and temperature for liquids gases are

(1) For liquids, p = ﬂu[m)

where = Viscosity of liquid at £°C, in poise
g = Viscosity of liquid at 0°C, in poise
a1, p = are constants for the liquid
For water, pg = 1.79 x 107 poise, o0 = 0.03368 and f = .000221.
(if) For a gas, p = Wg + cut — fr’
where for air pig = 000017, @ = 000000056, f = 1189 x 107",



1.3.5. Types of Fluids. The fluids may be classified into the following five types :
1. Ideal fluid, 2. Real fluid,
3. Newtonian fluid,

4. Non-Newtonian fluid, and
5. Ideal plastic fluid.

E;Idenl Fluid. A fluid, which is incompressible and is having no viscosity, is known as an ideal fluid,
Ideal fluid is only an imaginary fluid as all the fluids, which exist, have some viscosity.

& Real Fluid. A fluid, which possesses viscosity, is
known as real fluid. All the fluids, in actual practice, are real
fluids.

~ 3. Newtonian Fluid. A real fluid, in which the shear
stress is directly, proportional to the rate of shear strain (or
velocity. gradient), is known as a Newtonian fluid.

4. Non-Newtonian Fluid. A real fluid, in which the
shear stress is not proportional to the rate of shear strain (or
velocity gradient), is known as a Non-Newtonian fluid.

5. Ideal Plastic Fluid. A fluid, in which shear stress
is more than the yield value and shear stress is proportional
to the rate of shear strain (or velocity gradient), is known as
ideal plastic fluid. Fig. 1.2. Types of uids.

—= Shear Stiress

fldaul Fluid
— . ! ﬂu
Velocity gradient {_"TF]
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* L& ASURFACE TENSION AND CAPILLARITY

Surface tension is defined as the tensile force acting on the surface of a liquid in contact with a gay ¢,
on the surface between two immiscible iquids such that the contact surface behaves-ike a membrance ypg,,
tension. The magnitude of this force per unit length of the free surface will have the same value as the surface
ENcTEY per unit area, It is denoted by Greek letter o (called sigma). In MKS units, it is expressed as kggn,
while in S] units as N/m. | -

The phenomenon of surface tension is explained by
Fig. 1.10. Consider three molecules A, B, C of a liquid in a mass FREE SURFACE
of liquid. The molecule A is attracted in all girections equally by
the surrounding molecules of the liquid. Thus the resultant force
acting on the molecule A is zero. But the molecule B, which is
!Hnnﬁdmrtheﬁmmﬁm,hmdnpmh?upwuﬂlnd
downward forces which are unbalanced. Thus a net resultant foree
on molecule B is acting in the downward direction. The molecule
C,dmlhﬂmﬁ:ﬁumﬂmnfﬁquid,daxpﬂrmlmulhﬂ
downward force. All the moleculeson the free surfSTe experience
ldﬂmmﬂfnmu.ﬁunm&umﬂmafumhqmi‘ id acts like a )
very thin film under tension of the surface of the liquid acts as Fig. 1.10. Sortace tension.
though it is an elastic membrance under tension.

1.6.1. Surface Tension on Liquid Droplet. Consider a small spherical droplet of a liquid of rﬂitm
‘r’. On the entire surface of the droplet, the tensile force due to surface tension will be acting.
Let o = Surface tension of the liquid
p = Pressure intensity inside the droplet (in excess of the outside pressure initefiSity)
d = Dia. of droplet. «
lgtthedmpluhcutim::twnh:lvu.Thfmmmﬁngnnunnhlf(ufleﬁhﬂnwmh:
() tensile force due to surface tension acting around the

circumference 6f the cut portion as shown in Fig. 1.11 (b) and

Sl o
= o x Circumference _

&

=0 x xd
(o) DROPLET lhllE;.HlElﬂE TENSION

H(b}mmfmm&tm%flﬂ-}:u-}d‘u )

shown in Fig. 1.11 (c). These two forces will be equal and ~—#p
opposite under equilibrium conditions, Le., ' - .
pxgd=oxnd {¢) PRESSURE FORCES
oxnd do __ Fig. 1.11. Forces on droplet.
or - % 5 ==y 2 wf1.14)
4

Equation (1.14) shows that with the decrease of diameter of the presswre intensity inside B¢
droplet increases. s

1.6.2. Surface Tenslon on a Hollow Bubble. A hollow bubble
in contact with air, one inside and other outside, Thus two surfaces
case, we have

like a soap bubble in air has two surfice® .
are subjected to surface tension. In



p % %dﬂ =2 x (0 x nd)
 2ond _ 8o .(1.15)
T, d
7 d*
1.6.3. Surface Tension on a Liquid Jet. Consider a liquid jet of diameter ‘d” and length ‘L’ as shown
in Fig. 1.12.

Let p = Pressure intensity inside the liquid jet above the -
outside pressure ¥ ﬁ
0 = Surface tension of the liquid., 4 ""f
'Consider the equilibrium of the semi jet, we have 7
Force due to pressure = p x area of semi jet L o : :
=pxLxd 1 i
; ; pe
Force ldue to surface tension =gx 2L. 1 ] ~ 4‘
Equating the forces, we have d
pxLxd=ax2L (a) (b)

. ax2L 20 11
P=Txa =74 10} Fig. 1.12. Forces on liquid jet.




1.6.4. Capillarity. Capillarity is defined as a phenomenon of rise or fall of a liquid surface in a small
I:th relative W the adjacent general level of liquid when the tube is held vertically in the liquid. The rise of
liquid surface is known as capillary rise while the fall of the liquid surface is known as capillary depression.
I‘““F'ﬁlﬂlillll:rmunfcmnrmmu{liqujd.Im“hmdcptndsupunthcspcciﬁcw:ightnfthcﬁquid,diam[
of the tube and surface tension of the liquid.

ElplulhnhrClpﬂlnrth:,Cumidnrng]mmh of small
diameter ‘d’ opened at both ends and is inserted in a liquid, say water. The
liquid will rise in the tbe above the level of the liquid.

Let i = height of the liquid in the tube., Under a state of equilibrium,
the weight of liquid of height 4 is balanced by the force at the surface of
the liquid in the tube. But the force at the surface of the liquid in the tube
is due to surface tension.

Let o = Surface tension of liquid

0 = Angle of contact between liquid and glass tube.
The weight of liquid of height / in the tube
=(Areaoftubexh)x px g

=%n‘2xhx pxg

where p = Density of liquid

Vertical component of the surface tensile force
= (o x Circumference) x cos 0

=g x nd x cos B

For equilibrium, equating (1.17) and (1.18), we get
ffthxpxg:ﬂ:tﬁdxmsﬁ

p=Oxmdxcos® 4ocosb (1.19)
pxgxd

(1.18)

or =y
Eﬂﬂ:erpxg



The value of 8 between water and clean glass tube is approximately equal to zero and hence cos 0is
cqual to unity. Then rise of water is given by

h =.Ld .(1.20)
FI- x gh‘

Expression for Capillary Fall. If the glass tube is dipped in mercury, the level of mercury in the tube
will be lower than the general level of the outside liquid as shown in Fig. 1.14.

Let h = Height of depression in tube.

Then in equilibrium, two forces are acting on the mercury inside
the tube. First one is due to surface tension acting in the downward
direction and istqialtnu x nid x cos 0.

Second force is due to hydrostatic force acting upward and is
€qual to intensity of pressure at a depth ‘A’ x Area

T
—dedz

T
=pgxhx—d {* p=pgh}

Equating the two, we get

crxndxmsﬂ=pgﬁx5:-da

4o cos 0

: pgd -(1.21)
Value of 0 for mercury and glass tube is 128°,

h_:



Fluid Pressure
its Measureme
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2.1. Fluid Pressure

We see that whenever a liquid (such as water, oil
etc.) is contained in a vessel, it exerts force at all points
on the sides and bottom of the container. This force per

unit area is called pressure. If P is the force acting on
area a, then *Intensity of pressure,

E
H E ) P — oy
4 A
The direction of this pressure is always at right

angles to the surface, with which the fluid at rest, comes
in contact.

['Note: The intensity of pressure, in brief, is generally termed
as pressure ) .



2.2. Pressure Head

Consider a vessel containing some liquid as shown in Fig. 2.1, We know that, the liquid will

exert pressure on all sides as well as bottom of the vessel. Now, let a bottomless cylinder be made
to stand in the liquid as shown in the figure.

Fig. 2.1. Pressure head.

Let w = Specific weight of the liquid, _
Height of liquid in the cylinder, and
A = Area of the cylinder base.

A little consideration will show that, there will be some pressure on the cylinder base due to
weight of the liquid in it. Therefore, Pressure, V j_g 3

Weight of liquid in the cylinder - H
ot |
_ whd _, bt . }"J'}':"fi"a " hfg
A

Area of the cylinder base
o TH—

=
Il

P=

-
—

1

This equation shows that the intensity of pressure at any point, in a liquiEL is proportional to
its depth, from the surface (as w is constant for the given liguid). It is thus obvious that, the pressure
can be expressed in either of the following two ways : e

. As a force per unit area i.e., N/m?, kN/m” etc. ) F" o= hfﬁ

v As a height of the equivalent liquid column.
Mote: The pressure is always expressed in pascal (briefly written as Pa) such that | Fa = | N/m*, | kPa=1
kN/m® and 1 MPa= 1 MN/m” = | N/mm”,

Example 2.1. Find the pressure at a point 4 m below the free surface of water.

Solution. Given : i =4 m. H N
We know that, Pressure at the puimf E ,._-:jﬂz-qﬂ / M

rtmﬂ .
p= wh=98] =4=3924 kN/'m"=3924kPa Ans.

Example 2.2. A steel plate is immersed in an oil of specific weight 7.5 kNint' upto a depth
of 2.5 m. What is the intensity of pressure on the plate due fo the oil 7
Selution. Given : w=7.5 kN/m’ and h = 2.5 m.
We know that, Intensity of pressure on the plate,
p=wh=75%25=18.75 kN/m®=18.75kPa Ans.

Example 2.3. Calculate the height of a water column equivalent to a pressure of 0.15 MPa.
Selution. Given : p = 0.15 MPa = 0.15 x 10° kN/m’
Let h = Height of water column in metres.
We know that, Pressure of water column (p),
015> 10° = wh=981 =
or h=(015%10°/9.81=153m Ans.

P hfg;:, g.\sxlﬂﬁ s h)‘fﬁg
S 0I5 X 1072 R X 1002 2 99|
S h=IEA3m
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2.2. PASCAL’S LAW

It states that the pressure or intensity of pressure at a point in a static fluid is equal in all directions.
This is proved as : '
Consider an arbitrary fluid element of wedge shape in (o .-Q"ﬂ

a fluid mass at rest as shown in Fig. 2.1. Let the width of the
element is unity and p,, p, and p, are the pressures or intensity
of pressure acting on the face AB, AC and BC respectively. Let P gl

o
LABC = 0. Then the forces acting on the element are : Y \ X
1. Pressupe forces normal to the surfaces. A I C F
2. Weight of element in the vertical direction.
The forces on the faces are : =
Force on the face AB = p, x Area of face AB Fig. 2.1. Forces on a fluid element.
=pexdyx 1
Similarly force on the facce AC  =p, x Ar x 1
Force on the face BC =p,xds x|
Weight of element o 22 ;AC x Ixw,  where w= weight density of fluid.



or

or

or

or

Resolving the forces in x-direction, we have
Px%dy x 1-p (ds x 1) sin (90° -0) = 0
Pexayx1 ~pP:dsx1cos 6=0.
But from Fig. 2.1, ds cos © = AB = dy
; Pxxdyx1-p,xdyx1=0
P:=Ps S
Similarly, resolving the forces in y-direction, we get

Pyxdxx1-p, xdsx lcus(ﬂﬂ“—ﬂ)—‘.ﬁi—ﬂxlxw=ﬂ

Pyxdx—p,ds sinﬂ—%x w=0.
But ds sin 8 = dx and also the element is very small and hence weight is negligible.

Fydx —-p.xdx=0
p.' =. F.I - "-(2-2)

From equations (2.1) and (2.2), we have '
Px=Py=p; (23‘)

Since the choice of fluid element was completely arbitrary, which means the pressure at any point is

the same in all directions.



Problem 2.3. Calculate the pressure due to a column of 0.3 of (a) water, (b) an oil of sp. gr. 0.8, and
(c) mercury of sp. gr. 13.6. Take density of water, p = 1000 kg/m’.

Sol. Given :
Height of liquid column, Z=03m.
The pressure at any point in a liquid is given by equation (2.5) as
p=pgZ
(a) For water, p = 1000 kg/m’
. p = pgZ = 1000 x 9.81 x 0.3 = 2943 N/m?
= 2:?3 N/cm? = 0.2943 N/em?. Ans.
(b) For oil of sp. gr. 0.8, po = Sp. gr. x Density of water
= 0.8 x p = 0.8 x 1000 = 800 kg/m®
P=poxgx2Z
= 800 x 9.81 x 0.3 = 23544 = - 2344 N
m“  10° cm?
—| “Mll . Ans.
cm
(c) For mercury, sp. gr. =13.6

Density, ps = 13.6 x 1000 = 13600 kg/m?



-

Problem 2.4, The pressure intensity at a point in @ fluid is given 3.924 Nicm?. Find the corresponding
height of fluid when the fluid is : (a) water, and (b) oil of sp. gr. 0.9.

Sol. Given :
N
Pressure intensity, p-ﬂ.?ﬁ#%-!.ﬂﬂdnlﬂ‘ﬁ.
ﬁe:mupmdhghdghgz,unhtﬂuldlugimwmmm.ﬁju
Zs—
pxg
(a) For water, p = 1000 kg/m’
P 3.??-4#:!0"“
z-p:&g'lﬂﬂﬂxg.ﬂl 4 m of water. Ans.

(b) For oil, sp. gr. =09
po = 0.9 x 1000 = 900 kg/m’

. P _3.9Hxlﬂ'=
- I.Pn“.ﬂ' 900 x 9,81 444 m of oil. Ans.

Problem 2.5.An il of sp. gr. 0.9 is contained in a vessel. At a point the height of oil is 40 m. Find the

corresponding height of water at the point,
Sol. Given : _
Sp. gr. of oil, 5y=09
Height of oil, Zy=40m
Density of oi, pg = 1000 x 55 = 1000 x 0.9 = 900 kg/m®
Intensity of pressure, P“Puksxzﬁﬂﬂﬂxﬂ.ﬂlxdn%
m
; . P
R of water
Comesponding height = P e
=5|Il:£9'.31::4l]

1000 x 9.81 =0.9x 40 =36 m of water. Ans.

Problem 2.6. An open tank contains water upto a depth of 2 m and above i :
depthof 1 m. Findthe pressureintensiy () theiterface o thetwo liquds,an (i) at the oo he k-

Sol. Given :

Height of water, Z =2m
Hefght of ofl, Z=1m

Sp. gr. of oil, 5;=0.9

Density of water, p1 = 1000 kg/m?

Density of oil, p2=10.9 x ll:ﬂ-l]-?[!]kg.fm;



[

(i) Atinterface, i.e., atA

F=P2“§x1.ﬂ
=900 x 9.81 x 1.0
N 3829

= 8829 —

(ii) At the bottom, i.e., at B

P=p2Xglr+p1xgxZ=
= 8829 + 19620 = 28449 N/m? =

II'I

Pressure intensity at any point is given by
P=pxgxZ

10%

= 0.8829 N/cm?.

1

1.0 |=ioIfR =

T E==£ A=
2.0 —:WATE R™ - —

Ans. J,__ ===

Fig. 2.4

900 x 9.81 x 1.0 + 1000 x 9.81 x 2.0
zamm 4"9 N/cm? = 2.8449 N/em?.

Ans.



2.4. ABSOLUTE, GAUGE, ATMOSPHERIC AND VACUUM PRESSURES
The pressure on a fluid is measured in two different systems. In one sysiem, it is measured above the
absolute zero or complete vacuum and it is called the absolute pressure and in other sysiem, pressure is
measured above the atmospheric pressure and it is called gauge pressure. Thus
lc}hnllh Pressure is defined as the pressure which is measured with reference to absolute vacuum
pressure.
2. Gauge pressure is defined as the pressure which is measured with the help of a pressure measuring
in which the atmospheric pressure is taken as datum. The atmospheric pressure on the scale is
marked as zero.
3. Vacuum Pressure is defined as the pres-

sure below the atmospheric pressure. o 4

The relationship between the absolute pres- 3 _f GAUGE PRESSURE . ocPHERIC
sure, gauge pressure and vacuum pressure are shown &2 PRESSURE
in Fig. 2.7. “-

Mathematically : NlB ACCUM PRESSURE

(i) Absolute pressure PHEsmsu FIEI £ E

= Atmospheric pressure + Gauge pressure
or Pats = Puza + POsuge

ABSO
(i) Vacuum pressure LUTE ZERO PRESSURE
= Atmospheric pressure — Absolute pressure. Fig. 2.7. Relationship between pressures.

Note. (i) The atmospheric pressure at sea level al 15°C is 101.3 kN/m® or 10.13 N/cm? in SI unit. In case of MKS
units, it is equal 1o 1,033 kgf/cm”,

(if) The stmospheric pressure head is 760 mm of mercury or 10.33 m of walter.

Problem 2.8. What are the gauge pressure and absolute pressure at a poi
P _ i . point 3 m below the free surface
of a liguid having o density of 1.53 x 10" kgim’ if the atmospheric pressure is equivalent to 750 mm of
mercury ? The specific gravity of mercury is 13.6 and density of water = 1000 kg/m’.
(A.M.LE., Summer 1986)
Sel. Depth of liquid, Zy=3m
Density of liquid, pr = 1.53 x 10° kg/m?



msphl&l:i:{: pressure head, £y =750 mm of Hg

. P

- Atmospheric pressure, Py, =pyxgxZy
where pg = dﬁﬂi!}' L'ITHE = 13.6 = 1000 kgh‘n3
und Zo= Pressure head in terms of mercury.

Pasm = (13.6 % 1000) x 9.81 x 0.75 N/m® (- Zy=075)
= 100062 N/m®

Pressure at a point, which is at a depth of 3 m from the free surface of the liquid is given by,

P=p1xgxZ

= (1.53 » 1000) x 9.81 x 3 = 45028 N/m*

. Gauge pressure, p = 45028 N/m®. Ans.

Now absolute pressure = Gauge pressure + Atmospheric pressure
= 45028 + 100062 = 145090 N/m®. Ans.

2.5, MEASUREMENT OF PRESSURE

The pressure of a fluid is measured by the following devices ;
1. Manometers 2. Mechanical Gauges.

2 5.1. Manometers. Manometers arc defined as the devices used for measuring the pressure at a point
in a fluid by balancing the column of fluid by the same or another column of the fluid. They are classified

as :

(a) Simple Manometers, (b) Differential Manometers.

2.5.2. Mechanical Gauges. Mechanical gauges are defined as the devices used for measuring the
pressure by balancing the fluid column by the ﬂﬁwﬂ.m,cnmnmnly used mechanical pressure
EAUgES are :

(a) Diaphragm pressurc Eauges, (b) Bourdon tube pressure gauge,

(¢) Dead-weight pressure gauge, and (d) Bellows pressure gauge.

2.6. SIMPLE MANO METERS
A simple manometcr consists of a glass tube having one of its ends connected to a point where pressure
i to be measured and other end remains open 1o atmosphere. Common types of simple manometers are :

1, Piezometer,

’L_'_.,H-mhr. Manometer, and

3. Single Column Manometer.

2.6.1. Piezometer. It is the simplest form of manometer used for
measuring gauge pressures. One end of this manomeler is.mnnmmd lo
the point where pressure is 1o be measured and other end is open to the
atmosphere as shown in Fig. 2.8. The rise of liquid gives the pressure
head at that point. If at & point A, the height of liquid say water is i in
piezometer tube, then pressure at A ;

wgxh—
= W
pxE I'I'IJII

Fig. 2.8. Piezometcr.



:.ia.’il-lnlu Hl:mlﬂ!-r It consists of glass tube bent in U-shape, one end of which is connected to
a point at which pressure is to be measured and other end r:mainnupﬂnmm:m:_lm!ﬂumumm
Fig. 2.9. The tube generally contains mercury or any other liquid whose specific gravity is greater than the
specific gravity of the liquid whose pressure is to be measured.

(2} For Gauge pressure, - (b) For Vacuum pressure.
Fig. 2.9. U-tube Manometer.

(a) For Gauge Pressure. Let B is the point at which pressure is to be measured, whose value is p. The
datum line is 4 -A.
Let k= Height of light liquid above the datmum line
hy = Height of heavy liquid above the datum line
$1 = Sp. gr. of light liquid
P1 = Density of light liquid = 1000 = 5,
p2 = Density of heavy liquid = 1000 x 5,
As the pressure is the same for the horizontal surface. Hence pressure abo: i i
- ; ve the horizo
A-A in the left column and in the rght column of U-tube manometer should be same, iy

Pressure above A-A in the left column =p+p1xgxh
Pressure above A-A in the right column =paxgxh,

Hence equating the two pressures p + mghy = pogh,

' P =(paghy—py x g x hy).

(b) For Vacuum Pressure. For measuring vacuu
manometer will be as shown in Fig. 2.9 (b). Then M pressure, the level of the heavy liquid in the

Pmsnmibuwdﬂinlhnluﬂmlumn=pﬂhz+plgﬁlﬂ;

Pressure head in the right column above 4-4 =

Phz + gy +p=0

;mhl: 29 i (2.8)

; m £3. The right limb of a simple U-tube manomet o -
muﬁ:&m&ﬂm&mﬂﬂmﬂmﬁwﬁﬂwﬂ;’fﬁmﬁymuqurnpﬂtmﬂm
"””‘““ﬂmmmhﬂﬂfﬂfﬂwiﬂﬂwﬁgﬂ:m_w, - 0.9 &5 flowing. The centre of

difference of mercury level in the two limbs is 20 cm, he pressure of fluid in the pipe if the
Sol. Given ;
Sp. gr. of fluid, 5,=09

Density of fluid,  py =5, x 1000 = 0,9 x 1000 = 900 kg/m?



Sp. gr. of mercury, §; = 13.6

s Density of mercury, Pz = 13.6 = 1000 kg/m®
Difference of mercury level hy=20em=02m
Height of fluid from A-A, hy=20-12=8cm=008m
Let p = Pressure of fluid in pipe
Equating the pressure above A-A, we get

P + pighy = paghy

or p+ 900 x 9.81 x 0.08 = 13.6 x 1000 % 9.8] x 2
pP=13.6 x 1000 x 9.81 x .2 - 900 x 9.81 = 0.08
= 26683 ~ 706 = 25977 N/m? = 2.597 Njem®. Ans. Fig. 2.10

Problem 2.10. A simple U-tube manometer tontaining mercury is connected to a pipe in which a fluid
of sp. gr. 0.8 and having vacuum pressure is flowing. The other end of the manometer is open to atmosphere.

Find m VREIHN pressire in pipe, if the difference of mercury level in the two limbs is 40 em and the height
of fluid in the left from the centre of pipe is 15 cm below.

Sol. Given :

Sp. gr. of fluid, 5; = 0.8,
Sp. gr. of mercury, 5, = 13.6
Density of fluid, py = 800

Density of mercury, pz = 13.6 x 1000
Difference of mercury level, iz = 40 cm = 0.4 m. Height of liquid in
left limb, &; = 15 cm = 0.15 m. Let the pressure in pipe = p. Eg.]nﬁng pressure
above datum line A- A, we get
paghs + pighy +p =0
P=—pgh:+ pighi] Fig.2.11
= —[13.6 x 1000 x 9.81 x 0.4 + B0O x 9.81 x 0.15]
= - [53366.4 + 1177.2] = —54543.6 N/m” = — 5.454 N/em", Ans.
Problem 2.11. A U-Tube manometer is used to measure the pressure of water in a pipe line, which is
in excess of atmospheric pressure. The right limb of the manometer contains mercury and is open to
' The contact between water and mercury is in the left limb. Deiermine the pressure of water in the
main line, if the difference in level of mercury in the limbs of U-tube is 10 cm and the free surface of mercury
' is in level with the centre of the pipe. If the pressure of water in pipe line is reduced to 9810 Nim?, calculate
the new difference in the level of mercury. Sketch the arrangements in both cases. (A.M.LE., Winter 1989)
Sol. Given :
Difference of mercury =10em=0.1m
The arangement is shown in Fig. 2.11 {(a)
Let p, = pressure of water in pipe line (i.e., at point A)

The points B and C lic on the same horizontal line. Hence pressure at B should be equal to pressure at
C. But pressure at B.

= pressure at A + pressure due to 10 em (or 0.1 m) of water
=patprgnh
where p = 1000 kg/m® and hi=0.1m



= p, + 1000 x 9.81 x 0.1
= ps + 981 N/m? i)
Pressure at C = pressure at D + pressure due to 10 cm of
mercury
=0+pyxgxhy
where pp for mercury = 13.6 x 1000 kg/m’

and hy=10cm=0.1m
. Pressureat C =0 + (13.6 x 1000) x 9.81 x 0.1

= 13341.6 N o)

But pressure at B is equal to pressure at C. Hence equating
the equations (f) and (i), we get
Pa + 981 = 133416
pa = 13341.6 — 981

- 123606 1. Ans.
m

Ilnd Part
Given, p, = 9810 N/m?
Find new difference of mercury level. The armange-
ment is shown in Fig. 2.11 (b). In this case the pressure at A
is 9810 N/m? which is less than the 12360.6 N/m®. Hencé
mercury in left limb will rise. The rise of mercury in left limb
will be equal to the fall of mercury in right limb as the total
volume of mercury remains same.
Let x = Rise of mercury in left limb in ¢cm
Then fall of mercury in right limb = x cm
The points B, C and D show the initial conditions
whereas points B*, C* and D* show the final conditions.
The pressure at B* = pressure at C*
Pressure at A + pressure due to (10 - x) cm of water
= pressure at D* + pressure due to
(10 - 2x) cm of mercury

or PatpiXgxM=ppt+prxgxiy
D 0-
o ﬁlﬂnmﬂmx(‘m“]

=0+ (13.6 x 1000) x 9.81 x [

or

10 - 2x
100

Dividing by 9.81, we get
1000 + 100 — 10x = 1360 — 272«
272x - 10x = 1360 — 1100
o 262x = 260
or

or

RIGHT LIMB—]

LEFT LIMB—

|
LAALARARSURATL

MERCURY

Fig. 2.11 (a)

Fig. 2.1 (b)
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New difference of mercury =10-2rcm=10-2 x 0.992 = 8.016 cm. Ans.

. . = e L



2.7. DIFFERENTIAL MANOMETERS

Differential manometers are the devices used for measuring the difference of pressures between [Wo
points in a pipe or in two different pipes. A differential manometer consists of a U-tube, containing a heavy
liquid, whose two ends are connected to the points, whose diﬂn:nmnfpmumismumummd. Most
commonly types of differential manometers are :

1. U-tube differential manometer and
2. Inveried U-tube differential manometer.

2.7.1. U-tube Differential Manometer. Fig. 2.18 shows the differential manometers of U-tube type.

{a) Two pipes at different levels. {b) A and B are at the same level.
Fig. 2.18. U-tube differential manometers.

Fig. 2.18. (a). Let the two points A and B are at different level and also contains liquids of different

sp. gr. These points are connected 1o the U-tube differential manometer. Let the pressure at A and B are

Pa 8nd pp.

Let h = Difference of mercury level in the U-tube.
y= Distance of the centre of B, from the mercury level in the right limb.
x = Distance of the centre of A, from the mercury level in the right limb.
py = Density of liquid atA.
pz = Density of liquid at B.
p, = Density of heavy liquid or mercury.

Taking datum line at X-X.

Pressure above X-X in the left limb = p,g(h + x) + p,

where p, = pressure atA.



Pressure above X-X in the right limb = p, x g x fi 4 pyx g x y 4 py
where py = Pressure st B,
Equating the two pressure, we have
Pig(h+X) 4 pa = py X g X h 4 pagy + P
Pa—pa=pg* g% h+ pagy - mglh +x)
=hx glp, = 1) + pagy — 18X
< Difference of pressure at A and B = h x g{p, - py) + pagy = P
[Fig. 2.18. (5). A and B are at the same level and contains the ssme liquid of density g Then
Pressure above X-X in right limb =p,x gx i+ p;x g X+ pp
Pressure above X-Xin left limb = p; x g % (f + x) + py
Equating the two pressure
Pe*Bxh+pgx+pp=pyxgx(h+x)+py
= Pa=Pa=pPe* g xh+ pgx—pglh+x)
=g % h(pg — p1)].
 Problem 2.15. A pipe contains an oil of sp. gr. 0.9, A differential manometer connected ai the two
pownis A and B shows a difference in mercury level as 15 cm. Find the difference of pressure at the two peints.
Sol. Given :
Sp. gr. of oil, 5,=09 = Density, py = 0.9 % 1000 = 900 ke/m”
Difference in mercury level, hslS5em=0.15m
Sp. gr. of mercury, S,=13.6 o Density, p, = 13.6 % 1000 kg/m"
The difference of pressure is given by equation (2.13)
or PAa=Ps=g*h(p,—py)
=9.81 x .15 (13600 - 900) = 18688 N/m®. Ans.
Problem 2.16. A differential manometer is connected at the i ]
" inFig. 2.19. The pipe A contains a liquid of sp. gr. = 1.5 while mex : qu;’r J;".";”;T’f‘&}m
pressures at A and B are 1 kgficm® and 1.80 kgflem® respectively. Find the difference in mercury level in the

(2.1

AZ1Y)

Sol. Given:
Sp. gr. of liquid atdA, §5,=15 s py = 1500
Sp. gr. of liquid st B, 5;=09 S Pp =900
Pressure at A, p, = 1 kgflem® = | x 10* kgf/m?

= 10* x 9.81 N/m? (" 1kgf=981N)
Pressure at B, pg = 1.8 kgf/cm®

= 1.8 x 10* kgf/m’

=18x10*x 981 N/m* (v 1kgf=981N)
Density of mercury = 13.6 x 1000 kg/m’
Taking X-X as datum line.

Pressure above X-X in the left limb
= 13.6 x 1000 x 9.81 x h + 1500 x 9.81 x (2 + 3) + p,
= 13.6 x 1000 x 0.81 = h + 7500 x 9.81 + 9.81 = iy




Pressure above X-X in the right limb =900 x 981 x (h+2)+ps

= 900 x 9.81 x (h +2) + 1.8 x 10* x 9.81
Equating the two pressure, we get

13.6 x 1000 = 9.81h + 7500 x 9.81 + 9.81 x 10*

=900 x 9.81 x (h + 2) + 1.8 x 107 x 9.81
Dividing by 1000 x 9.81, we get -

1368 +754+10=(h+2.0)x .9+ 18
136h+175=0% + 1.8+ 18=09k+ 19.8

or (13.6-0.94=198-175 or 12.7h=23

- %:{um m=18.1ecm. Ans.

Problem 2.17. A differential manometer is connected at the two points A and B as shown in Fig. 2.20.

At B air pressure is 9.81 Njcm® (abs), find the absolute pressure at A.
Sol. Air pressure at 8 = 9.81 Njem®

or pg =981 x 10° N/m®
" Density of oil = 0.9 x 1000 = 900 kg/m’

Density of mercury = 13.6 x 1000 kg/m’

Let the pressure at A is py

Taking datum line at X-X

Pressure above X-X in the right limb

= 1000 x 9.81 x 0.6 + py
= 5886 + 98100 = 103986
Pressure above X-X in the lefit limb
= 13.6 x 1000 x 9.81 x 0.1 + 900 x 9.81 = 0.2 + p,
= 13341.6 + 1765.8 + p,
Equating the two pressure head
103986 = 13341.6 + 17658 + p,
pa = 103986 — 15107.4 = 88876.8
py = 88876.8 N/m? = —mf; = 8.887 ﬁ; :
Absolute pressure at A = 8.887 N/em®. Ans.

2.7.2. Inverted U-tube Differential Manometer. It con-
sists of an inverted U-tube, containing a light liquid. The two ends
of the tube are connected to the points whose difference of pressure
is 10 be measured. It is used for measuring difference of low
pressures. Fig. 2.21 shows an inveried U-tube differential

manomeler connected to the two points A and B. Let the pressure at
A is more than the pressure at 5.

Let by = Height of liquid in lefi imb below the datam
line X-X

hi, = Height of liquid in right limb




h = Difference of light liquid
Py = Density of liquid st A
pz = Density of liquid at B
py = Density of light liquid
Pa = Pressure al A
ps = Pressure at B,
Taking X-X as datum line. Then pressure in the left limb below X-X
=pa—p1xgxhy.
- Pressure in the right limb below X=X,
=ps—-P2%Exha—p,xgxh
Equating the two pressure
Pa—p1%gxhy=py—paxgxhy—p,xgxh
o PA=Ps=PrXExh—pyxgxhy—p,xgxh ~(2.14)
Problem 2.18, Water is flowing through two different pipes to which an inverted differential manomeser
having an oil of sp. gr. 0.8 is connected. The pressure head in the pipe A is 2 m of water, find the pressure in

the pipe B for the manometer readings as shown in Fig. 2.22.

Sol. Pressure head at ﬂ-‘%-zmufwnu
- pa=pxgx2=1000 x 9.81 x 2 = 19620 N/m?
Fig. 2.22 shows the arrangement. Taking X-X as datum line.
Pressure below X-X in the left limb

=pa—P1xgxhy

= 19620 - 1000 x 9.81 x 0.3 = 16677 N/m".
Pressure below X-X in the right limb

= pg— 1000 x 9.81 x 0.1 — 800 x 9.81 x 0.12

= pg — 981 - 941.76

H
LR ol B Wl e W

A

H H

=py-1922.76 Fig.2.22
Equating the two pressure, we get
16677 = py - 192276
. Py = 16677 + 1922.76 = 18599.76 N/m?
o ps = 18599 Njem®. Ans.

Problem 2.19. In Fig. 2.23, an I'.HPEH'.EEI f!f,ﬂ’mminf manometer is connected to two pipes A and B
which convey water. The fluid in manometer is oil of sp. gr. 0.8. For the manometer readings shown in the

figure, find the pressure difference MA and B.

Sol. Given :

Sp. gr. of oil =08 .. p,=B800kgm’

Difference of oil in the two limbs
=(30+20)-30=20cm ~

Taking datum line at X-X

Pressure in the left limb below X-X

=py—1000x 9.81 0.




Pressure in the right limb below X-¥ = pg ~ 1000 x 9.81 x 0.3 — 800 x 9.81 x 0.2

=pp—2943 - 1569.6 = py - 4512.6
Pa=2943 = py - 4512.6
Pa—py=4512.6 - 2943 = 1569.6 N/'m®. Ans

I’mhlﬂl 2.20. Find out the differential reading ‘h' of an inverted U-tube manomeler containing oil
of specific gravity 0.7 as the manometric fluid when connected across pipes A and B as shown in Fig. 2.24
below, conveying liquids of specific gravities 1.2 and 1.0 and immiscible with manometric fluid. Pipes A and
B are located at the same level and assume the pressures at A and

Equating the two pressure

Biobeequal. (A.M.LE., Winter 1985)
Sol. Given ; ,
Fig. 2.24 shows the arrangement. Taking X-X as datum line.
Let Pa = Pressure at A
: Pn = Pressure at B
Density of liquid in pipe A
' = Sp. gr. x 1000
= 1.2 x 1000
= 1200 kg/m?

Density of liquid in pipe B

= 1 x 1000 = 1000 kg/m’

Density of il = 0.7 x 1000 = 700 kg/m’
Now pressure below X-X in the left limb.
=py—1200x 981 x 0.3 -T00x 981 x A
Pressure below X-X in the right limb
= pg — 1000 x 9.81 x (h + 0.3)
Equating the two pressure, we get
Pa— 1200 x 9.81 x 0.3 —700 x 9.81 x h = pg — 1000 x 9.81 (h +0.3)

But Pa = pg (given)
. —1200 x 9.81 x 0.3 =700 x 9.81 x h=— 1000 x 9.81(k + 0.3)"
" Dividing by 1000 x 9.81,
—12x03-0.7Th=-(h+03)
ot © 03x12+07h=h+03 or 036-03=h—-0Th=03h
036 - 030 0.06
A o3 o0

1 1
_sm-jxlIII-!ﬂm. Ans.
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the Bourdon gauge which measures the difference between the system
pressure inside the tube and atmospheric pressure. It relies on the
deformation of a bent hollow tube of suitable material which, when subjected
to the pressure to be measured on the inside (and atmospheric pressure on
the outside), tends to unbend. This moves a pointer through a suitable gear-
and-lever mechanism against a calibrated scale. Figure (b) shows an open
~ U-tube indicating gauge pressure, and Fig. (c¢) shows an open U-tube

indicating vacuum. Figure (d) shows a closed U-tube indicating absolute
pressure. If p is atmospheric pressure, this is a barometer. These are called U-
tube manometers.






Hydrostatic Forces on Surfaces
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3.1, INTRODUCTION

This chapter deals "i!.rith the fluids (ie., liquids and gases) at rest. This means that there will be no
relative motion between adjacent o neighbouring fluid layers. The velocity gradient, which is equal to the
change of velocity between two adjacent fluid layers divided by the distance between the layers, will be zero

nr%-n.m shear stress which is equalto %u&u also be zero. Then the forces acting on the fluid particles
will be :

_L.dunmpmnur: of Muid normal o the surface,

E._#du: to gravity (or self-weight of fluid particles).

3.2. TOTAL PRESSURE AND CENTRE OF PRESSURE
Total pressure is defined as the force exerted by a static fluid on a surface cither plane or curved when
the fluid comes in contact with the surfaces. This force always acts normal to the surface.

Centre of pressure is defincd as the point of application of the 1otal pressure on the surface. There are
four cases of submerged surfaces on which the total pressure force and centre of pressure is to be determined.
The submerged surfaces may be :

1, Vertical plane surface,
Horizontal plane surface,
3, Inclined plane surface, and

33. VERTICAL PLANE SURFACE SUBMERGED IN LIQUID
Consider a plane vertical surface of arbitrary shape immersed in a liquid as shown in Fig. 3.1.
Let A ="Total area of the surface
% = Distance of C.G. of the arca from free surface of liquid
G = Cenitre of gravity of plane surface
P = Centre of pressure
h* = Distance of centre of pressure from free surface of liquid.

() Total Pressure (F). The total pressurc on ibe surface may be determined by dividing the entire
mimmlnumhun{mlllpulllﬂﬂl-mfmﬂﬂmﬂmﬂ#nﬂhﬂlﬂmﬁmmlpmnm:
force on the whole ares is calculated by integrating the force on small strip.

Consider a strip of thickness dh and width b at a depth of / from free surface of liquid as shown
in Fig. 3.1.



Pressure humhymthuﬂnp, szg* FREE SURFACE OF LIQWD

(See equation 2.5)
Area of the strip, dA = b x dh
Total pressure force on strip, dF = p x Area
= pghx b x dh

2~ Total pressure force on the whale 'su:fac:,
thf:fpgﬁxh:dh:pg bx b x dh

But jhxﬁxdﬁ =.rk:¢d.i Fig. 3.1

= Moment of surface area about the free surface of liquid
= Arca of surface x Distance of C.G. from free surface

=Axh
L F = p‘mﬁ rdd{s-l]
For water the value of p = 1000 kg/m® and g = 9.81 m/s%. The force will be in Newton.

(b tre of Pressure (h*). Centre of pressure is calculated by using the **Principle of Moments",
which states that the moment of the resultant force about an axis is equal to the sum of moments of the
components about the same axis,

The resultant force F is acting at P, ata distance h* from free surface of the liquid as shown in

Fig. 3.1. Hence moment of the foree F about free surface of the liquid = F = /i*. -(3.2)
Moment of force dF, acting on a strip about free surface of liquid
=dF x h (" dF = pghx b x dh}
=pgh=bxdhxh

Sum of moments of all such forces about free surface of liquid

=nghxbxdﬁxh=pgfb:hx!ﬂh

= P.!'fbh: dh = ngflllﬂ (- bdh=dA)
But _r.f;’d-l = f biddh A
= Momeant of Inertia of the surface about free surface of liquid
= Iﬂ, = —
Sum of moments about free surface
= pgly .(3.3)
Equating (3.2) and (3.3), we get &3
Fxh* = pely
But Fu pgAE
pgAh x h* = pgl,
o uPED 1o G4

e j:g.‘.ﬁ Al



b & [
_-:-':@'-raw--

all 5

veal {fm— from free

L '_: " of pressure {1 e, .Fl“'] lies I:-n.’luwth: centre ﬂm'ﬂh -—--W-E fr-x::-.-*!:- A
e w.'? ﬂiﬂhm: of centre of pressure from free surface of ]iquiﬂ i-‘ d cpender L { the density of the

I'l'

Ly ol

BE T,

TABLE 3.1
e moments of inertia und other geor i pr § 0l 3 PIBEATHRERE S




c.a.hﬁr:h Area .bumuigﬁw}* inertia g
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: :
b— |

Width of plane surface, b=2m
Depth of plane surface, d = 3 m

(2) Upper edge coincides with water surface (Fig. 3.2). Total
pressure is given by equation (3.1) as
F = pgAh
where p = 1000 kg/m®, g =981 m/s’
A=3x2=6m’ i=%(3]=1.5m,

F=1000%x981x6x15
=88290N. Ans.
Depth of centre of pressure is given by equation (3.5) as

h':fi_+s .
Ah

where [; = M.O.L. about C.G. of the area of surface

4.5
6x1.5

(b) Upper edge is 2.5 m below water surface '33).
pressure (F) is given by (3.1) P e 2o

+15=05+15=20m. Ans.

N F= pg'li
where i = Distance of C.G. from free surface of water

'154'%!4,[!1:1

! F= 1000 x 981 x 6 x 4.0
=135440 N. Ans.

F‘mhltm 3.1. A rectangular plane surface is 2 m wide and 3 m deep. It lies in vertical plane in water.
Dm_!rmme the total pressure and position of cenire of pressure on the plane surface when its upper edge is
horizontal and (a) coincides with water surface, (b) 2.5 m below the free water surface.

Sol. Given :

FR WATER SURFACE

LR e
- B
-

oG A0m
«p

pe——2m—=
Fig. 33



Centre of pressure is given by ;,t_f_i_'_;
Ah

where lg=4.5A =60,k =40

Sl -
6.0x 4.0

=0.1875 + 4.0 = 4.1875 = 4.1875m. Ans.

~ Problem 3.2. Determine the total pressure on a circular plate of diameter 1.5 m which is placed
vertically in water in such a way that the centre of the plate is 3 m below the free surface of water. Find the

.i'li-

4.0

position of centre of pressure also. .
Sol. Given : Diaof plate, d=1.5m
FREE SURFACE
Area, A=T (157 = 1767 m?
F= 30m
Total pressure is given by equation (3.1), 10m
F = pgAh n
= 1000 x 9.81 x 1,767 x3.0N
=5200281 N. Anms.

Position of centre of pressure (i*) is given by equation (3.5)

b e

eSSk
Ah

4 |___
where [; =:|II'=".-=III:"'I':1'5 = 00,2485 m* I-!un——-{
4 64 Fig. 3.4
0.2485
oo 2883 L 4 0=0.0468 + 3.0
W= Tt67x30 " =

= 10468 m. Ans.

Problem 3.3. A-reﬂunguhr sluice gate is situated on the vertical wall of a lock. The vertical side of
the sluice is ‘d’ metres in length and depth of centroid of the area is 'p" m below the water surface. Prove that

: d&
Iﬁ:dﬂﬂhgj’prﬂ.nﬂeweqm!m[p+ﬁ;).
Sol. Given :
Depth of vertical gate =dm
Let the widthof gate  =bm

s Area, A=hxdm? §
Depth of C.G. from free surface ; Ge I
h=pm. .L P
Let h* is the depth of centre of pressure from free surface,
which is given by equation (3.5) as Fig. 3.5

I}
h':;%-l-.fl, Whﬂﬂfﬂﬂﬁ

d*
h-.(%/ﬁxdnp]+puﬁ+p or ptig- Ans.



Problem 3.4. A circular opening, 3 m diameter, in a vertical side of a tank is closed by a disc of 3 p,
diameter which can rotate about a horizontal diameter. Calculate :
(i) the force on the disc, and
(if) the torque required to maintain the disc in equilibrium in the vertical position when the head of
water above the horizontal diameter is 4 m. (A.-M.LE., Winter, 1977)

Sol. Given ;
Dia of opening, d=3m
Area, A:Exi’-’:lﬂﬁﬂﬁm:.
Depth of C.G., h=4m
(¥) Force on the disc is given by equation (3.1) as
F = pgAh

= 1000 x 9.81 x 7.0685 x 4.0 = 277368 N = 277.368 kN. Ans.

(#£) To find the torque required to maintain the disc in equilibrium, first calculate the point of application
of force acting on the disc, i.e., centre of pressure of the force F. The depth of centre of pressure (h*) is given

by equation (3.5) as

T
—dt
i
L S A . SISy { fﬂ-in‘l
Al Eﬂ‘?xiﬂ ™
= d +4.ﬂ=——3:——+4ﬂ=u]l¢+4ﬂ—414
16 % 4.0 16x40 " o e sl
STr=zer] B
S =
Ll | ,‘
Fig. 3.6

The force F is acting at  distance of 4.14 m from free surface. Moment of this force bout borizoats

diameter X-X -
=Fox (h* - h) = 277368 (4.14 - 4.0) = 38831 Ans.
Hence 8 torque of 38831 Nin must be applied on the disc in the clog k“?in dimﬂirr‘
Problem 3.5. A pipe line which s 4 m in diameter contains a P centre
Wi - o gate valve, The pressure at the of
the pipe is 19.6 Niem. If the pipe is filled with oil of sp. gr. 0.87, find the force everted by rh;:; upon the gate

and position of centre of pressure. (Converted to S1 Units, A.M.1.E., Winter, 1975)
Sol. Given : i '
Dia. of pipe, dudm

Area, A=fxdudnm?



oL _u Ia_.sum! U _r

- 4m
S=0.87 'H
( U WAl
TGATE VALVE
Fig. 3.7
Sp. gr. of oil, 5=087
~. Density of oil,

pa = 0.87 x 1000 = 870 kg/m”

. Weight density of oil, Wp = po X g = 870 x 9.81 N/m’

Pressure at the centre of pipe,  p = 19.6 Nfem® = 19.6 x 10° N/m*

_p _196x10°

Pressure head at the centre s 70 % 9.81
The height of equivalent free oil surface from the centre of pipe = 22 988 m.

The depth of C.G. of the gate valve from free oil surface h = 22.988 m

(i) Now the force exerted by the oil on the gate is given by

F = pgAh
where p = density of oil = 870 kg/m’

= 22,988 m

F= 870 = 0.81 x 4% x 22,988 = 2465500 N = 2.465 MN. Ans.
(if) Position of centre of pressure (h*) is given by (3.5) as
n
=
H-E%+E= G4

TR g

a 4 i
=f§i+ﬁ=ﬁﬁﬁ£ﬁﬁ+21ﬂm-ﬂﬂﬂ+21ﬂm EHDI-.JHL

{Jr centre of pressure is below the centre of the pipe by a distance of 0.043 m. Ans.

+h

blem ' L les triangular plate of
3.6. Determine the total pressure and centre :E-_f pressure on an isosce lat
bn.mi:ﬂdniﬁmde 4 m when it is immersed vertically in an oil of sp. gr. 0.9. The base of the plate coincides
with the free surface of oil

Sol. Given : !
Base of plate, b=4m
Height of plate, h=4m
bxh 4x4
s Area, A= 2 - 2
Sp. gr. of oil, §=09 .
Density of oil, p = 900 kg/m",

The distance of C.G. from [ree surfnce of oil,

L -l 4-EBm.
ﬂ-jﬂh 3“



Total pressure (F) is givenby F = pgAh
=900 x981x80x1.33N=9597.6 N. Ans.
Centre of pressure (#*) from free surface of oil is given by
he =4
Ah

where I = M.O.I. of triangular section about its C.G.
_ bh’ _4x 4
36 36

L Al
8.0x133

=7.11m*

h#

+133=0.6667 + 1.33 =199 m. Ans.



14 HORIZONTAL PLANE SURFACE SUBMERGED IN LIQUID

Consider a plane horizontal surface immersed in a static fluid.
As every point of the surface is at the same depth from the free surface
of the liquid, the pressure intensity will be equal on the entire surface
und equal to, p = pgh, where h is depth of surface,

Let A =Total area of surface
Then total force, F, on the surface
=pxArca=pgxhxA
_ = pgAl Fig. 3.16
where = Depth of C.G. from free surface of liquid = A
ilsg h* = Depth of centre of pressure from free surface = h.

Prohlem 3.13. Fig. 3.17 shows a tank full of water. Find :
(i) Total pressure on the bottom of tank.
(if) Weight of water in the tank
(iif) Hydrostatic paradax between the results of (i) and (ii) Width of tank is 2 m.
Sol. Given :
Depth of water on bottom of tank
h=3+06=36m
Width of tank =2m
Length of tank at bottom = 4 m
Area at the bottom, A=4x2= 8 m*
(/) Total pressure F, on the bottom is
F = pgAh
= 1000 x 9.81 x 8x 3.6
= 282528 N. Ans.

(i) Weight of water in tank = pg x Volume of tank
= 1000 x 9.81 x [3x0.4x 2+4x .6x2)

= 1000 x 9.81 [2.4 + 4.8] = T0632 N. Ans.

(iii) From the results of (7) and (if), it is observed that the lotal weight of water in the tank is much less
'h‘“ﬂ!hm pressure at the bottom of the tank. This is known as Hydrostatic paradox.




Buoyancy and Floatation

4.1. INTRODUCTION

In this chapter, the equilibrium of the floating and sub-merged bodies will be considered. Thus the

chapter will include : 1. Buoyancy, 2. Centre of buoyancy, 3. Mctacentre, 4. Metacentric beight, 5. Analytical
method for determining metacentric height, 6. Conditions of equilibrium of a floating and sub-merged body,
ind 7. Experimental method for metacentric beight.

4.2. BUOYANCY

When a body is immersed in a fluid, an upward force is exerted by the fluid on the body. This upwand

force is equal 1o the weight of the fluid displaced by the body and is called the force of buoyancy or simply
buoyancy.

4. CENTRE OF BUOYANCY

It is defined as the point, through which tbe force of buoyancy is supposed 1o act. As the foree of

buoyancy is a vertical force and is equal to the weight of the fluid displaced by the body, the centre of buoyancy
will be the centre of gravity of the fluid displaced.

Problem 4.1. Find the volume of the water displaced and position of centre of buoyancy for a wooden

block of width 2.5 m and of depth 1.5 m, when it floats horizontally in water. The density of wooden block is

650 kg/m’ and its length 6.0 m.
Sol. Given :
Width =25m lw
Depth =l5m G
Length =60m E{F.

nir

Volume of the Block 22.535..5!{!.{!=22jﬂm]

Density of wood,  p =650 kg/m’
Weight of block = p x g x Yolume Fig. 4.1
=650 x 9.81 x 2250 N = 143471 N
For equilibrium the weight of water displaced = Weight of wooden block

= 14347TIN e M
_ . _ Weight of watesdispluced _ _ 143471 o', Ams
~. Volume of water displaced = Weight density of waler ~ 1000 x 9.81 = 14.615

(-~ Weight density of water = 1000 x 9.81 N

Position of Centre of Buoyancy. Volume of wooden block in water
= Volume of water displaced

25x hx60=14625m where h is depth of wooden block in waler

ha—— 2.5 —=




_ _14.625
2.5%x6.0

Centre of Buoyancy = [I.';?S

h

=0.975m

= 0.4875 m from base. Ans.



Problem 4.3. A stone weighs 392.4 N in air and 196.2 N in-water. Compute the volume of stone and

its specific gravity.
Sol. Given :
Weight of stone in air =3924N
‘Weight of stone in waler = 1962 N
For equilibrium,
Weight in air — Weight of stone in water = Weight of water displaced
or 392.4 - 196.2 = 196.2 = 1000 = 9.81 x Uuhlm: of water displaced
. - _196Z 1. s_1 3
Volume of water displaced = 1000 x 98150 @ 5[} x10°cm' =2 x 10* em®. Anms.
= Volume of stone
Volume of stone =2x10'cm’. Ans.
Specific Gravity of Stone
_ Weight in air _ 3924
Mass of stone 2 g TR 40 kg
- Mass in air air _ 400kg _ kg
Density of stone g 3 S =40 x 50 = zl]uum
sp™
Density of stone 2000
Sp. gr. of stone = D =

~ Density of water mm:I'“' Ans.
Problem 4.4. A body of dimensions 1.5 m x 1.0 m x 2 m, weighs 1962 N in water. Find its weight i
air. What will be its specific gravity ?
Sol. Volume of body =150x%1.0x20=30n°
Weight of body in water = 1962 N
Volume of the water displaced = Volume of the body = 3.0 m’
Weight of water displaced = 1000 x 9.81 x 3.0 = 29430 N
For the equilibrium of the body
Wclght of body in air — Weight of water displaced = Weight in water
W — 29430 = 1962
W = 29430 4 1962 = 31392 N



M'“ ﬂ[hﬂd}' ¥ We_igbt il'l air = 31392
E 0.51
Density of the bod . _Mass 3200 _
s Volume 3.0 1066.67

Sp. gravity of the body = ITET

Problem 4.5. Find the density of a metallic body which floats at the interface of mercu 13.6
: ry of sp. gr. 13.
and water such that 40% of its volume is sub-merged in mercury and 60% in water.

Sol. Let the volume of the body = V m?
Then volume of body sub-merged in mercury

= 3200 kg

= L.067. Ans.

40 3
100 V=04Vm

Volume of body sub-merged in water

I_""'-lii"r='ﬂ'.51"'m! B e ——————

100
For the equilibrium of the body Fig. 4.3

Total buoyant force (upward force) = Weight of the body

But total buoyant force = Force of buoyancy due to water + Force of buoyancy due to mercury
Force of buoyancy due to water = Weight of water displaced by body

= Density of water x g x Volume of water displaced

= 1000 = g x Volume-of body in water
=1000xgx0.6x VN

and  Force of buoyancy due to mercury = Weight of mercury displaced by body
= g % Density of mercury x Volume of mercury displaced
= g » 13.6 x 1000 x Volume of body in mercury
=gx13.6x 1000 x.04VN

Weight of the body = Density x g ‘v'ukum:ﬂfhﬂf:pxgx?
where p is the density of the body
For equilibrium, we have

Total buoyant Force = Weight of the body
1000 x gx06xV+13.6x 1000xgx 4V=pxgxV
or p = 600 + 13600 x 4 = 600 + 54400 = 6040.00 kg/m’

Density of the body = 6040.00 kg/m”. Ans.



44. META-CENTRE
It is defined as the point about which :_hudy starts oscillating when the body is tilted by a small lﬂsl"
The mets-centre may also be defined as the point at which the line of action of the force of buoyancy will meet
the nogmal axis of the body when the body is given a small angular displacement.
| Consider a body floating in a liquid as shown in Fig. 4.5 (). Let the body is in equilibrium and G is
the centre of gravity and B the centre of buoyancy. For equilibrium, both the points lie on the normal axis,
which is vertical.
Let the body is given a small angular displacement in the clockwise direction as shown in Fig. 4.5 (b)
The ceatre of buoyancy, which is the centre of gravity of the displaced liquid or centre of gravity of the portio”



B e

Fig. 45. Mela-centre.

of the body sub-merged in liquid, will now be shifted towards right from the normal axis. Let it is a1 B; as
shown in Fig. 4.5 (b). The line of action of the force of buoyancy in this new position, will intersect the normal
axis of the body at some point say M. This point M is called Meta-centre.

4.5. META-CENTRIC HEIGHT
L

The distance MG, Le., the distance between the meta-centre of a floating body and the centre of gravity
of the body is called meta-centric height.

4.6. ANALYTICAL METHOD FOR META-CENTRE HEIGHT

Fig. 4.6 (a) shows the position of a floating body in equilibrium. The location of centre of gravity m:1ui
centre of buoyancy in this position is at G and B. The floating body is given a small angular displacement in
the clockwise direction, This is shown in Fig. 4.6 (b). The new centre of buoyancy is at B). The vertical line
through B cuts the normal axis at M. Hence M is the meta-centre and GM is meta-centric height.

II:IFLAH OF BODY AT WATER LINE

o el
Fig. 4.6. Meta-centre height of a fleating body.

The angular displacement of the body in the clockwise direction causes the wedge-shiped pri:mE-EJE:
on the right of the axis to go inside the water while the identical wedge-shaped prism represented by ACA

emerges out of the water on the left of the axis. These wedges represent a gain in buoyant force on the right



*side and a comresponding loss of buoyant force on the left side. The gain is represented by a vertical foree df
'f-"ﬁ‘E through the C.G_. nf the prism BOB' while the loss is represented by an equal and opposite force dFH
acting vertically downward through the centroid of AGA'. The couple due to these buoyant forces dFy tends
to rotate the ship in the counter clockwise direction. Also the moment caused by the displacement of the centye
of buoyancy flEm B to B, is also in the counter clockwise direction. Thus these two couples must be equal,

Couple Due to Wedges. Considertowards the right of the axis a small strip of thickness dx ata distance
x from O as shown in Fig, 4.5 (b). The beight of stripx x LBOB' =x % 0.
(. LBOB'=LAOA"=BMB,' =)

Area of strip = Height » Thickness = x x 0 x dx
If L is the length of the floating body, then
Vaolume of strip = Area x L
=xxBxlxdr
. Weight of strip = pg * Volume = pgr 8L dx

Similarly, if a small strip of thickness dx al a distance x from O towards the left of the axis is considered,
the weight of strip will be wx® L dx. The two weights are acting in the opposite direction and hence constitute

a couple.
Moment of this couple = Weight of each strip » Distance between these two weights

= pgx OL dx [x + 1]
= pex 6L di x 2¢ = 2pgx” OL dx
Moment of the couple for the whole wedge

: f 2pgr® AL dx (A1)
Moment of couple due to shifting of centre of buoyancy from 5 to B,

= Fg x BB,

=FpxBM %0 {~- BB, =BMBif 0 is very small}

=WxBMx0 [ Fy=W} ..(42)

But these two couples are the same. Hence equating equations (4.1) and (4.2), we get
WxBMx 0= | 2pgx 8 Ldx

W x BM x azngﬂfzﬂm

W BM = 2pg [iLde
Now Ldx = Elemental area on the water line shown in Fig. 4.6 (c) and = dd

L WxBM = ngfrtn'.{

But from Fig. 4.5 : .
wnummmm?ﬁuf;_:"ﬂ;'”ﬂ is the second moment of area of the plan of the body !

W BM = pgl {where [ = 2 [x*dA]}

-8



But W = Weight of the body
= Weight of the fluid displaced by the body
= pg % Volume of the fluid displaced by the body
= pg % Volume of the body sub-merged in waler

=pgxV
_pgxI I (4.3
' 2= pgx¥ ¥ (4-2)
GM = BM - BG =$-BG
Meta-centric height = G_Mré,-_ BG. (4.4)

Problem 4.7. A rectangular pontoon is 5 m long, 3 m wide and 1.20 m hight. The depth of r'mmer.ﬁ:‘:rn
of the pontoon is 0.80 m in sea water. If the centre of gravity is 0.6 m above the bottom of the pontoon, determine

the meta-centric height. The density for sea water = 1025 kgim’. (Delhi University, 1992)
Sol. Given : f— 3m —
Dimensionof pontoon =5mx3mx120m wd L I r: *
Depth of immersion = 0.8m = 81 Lok P 2iin
Distance AG=0.6m N
Distance AB = 2 % Depth of immersion f

Density for sea water = 1025 kg/m’ I
Meta-centre height is GM is given by Equation (4.4) is
I

GH:g-B{?

where [ = M.O. Inertia of the of th ntoon about y-y axi ¥
plan e po a Y-y axis Y. . I
='}"15 x¥m'= 1'Em"
12 4 Fig. 4.7
¥ = Volume of the body sub-merged in water

=3x08x50=120m*
BG =AG-AB=06-04=02m

45 1 45
GM = T x ﬁ—-ﬂ.!: d—ar—-lll =0.9375-02=0.737m. Ans.

of the body if depth of immersion is 0.8 m ? Determine the meta-centric height also.

1

ek =
_-I-H.E-'L'I.dm T
2.0m

Sol. Given :
Dimension of body =3x2x1
Depih of immersion =08m

Find (i) Weight of body, W
(i) Meta-centric height, GM
() Weight of Body, W

= Weight of water displaced = pg x Volume of water displaced



= 1000 x 9.81 x Volume of body in water
=1000x 981 x3Ix2x08N
=47088 N. Ans.

(if) Meta-centric Height, GM

Using equation (4.4), we get

lﬂ”n%—ﬂﬁ

where = M.O.IL about y-y axis of the plan of the body
1 Ix2?

= b _—=

12 12
¥ = Volume of body in water
=3x2x08=48m’
10 08

B‘Gudﬁ-dﬂz—zh—Tﬂﬂ-

GH#%~ 0.1 = 0.4167—0.1 = 03167 m.

IxP= 20 m*

5-04=0.1

I
|

fAr—p

B i

Ans.

ml:l:u-l.!..&Hxﬁduﬂﬁmgwﬂ.?mmm.mm“mEmm-mﬂ#khﬂkh

of the block if its size is 2m x I m x 0.8 m.
Sol. Given:
Dimension of block
Let depth of immersion =} m
Sp. gr. of wood =0.7
‘Weight of wooden piece

= Weight density of wood* x Volume
=07x1000x 981 x2x1x08N
Weight of water displaced
= Weight density of water
% Volume of the wood sub-merged in water
=1000x 981 x2x1xhN
For equilibrium,
Weight of wooden piece = Weight of water displaced
. T00x 981 x2x1x08=1000x981x2x1xh
himxgﬁl x2x1x0.8
1000 x 9.81 % 2% 1
Wﬂmﬂfh}’m&mml_t.
A‘E'g"‘z—'ﬁlﬂm

AC=0820=04m
BG=AG-AB=04-028= 0.12m

=2x1=x0.8

-hr_,.r

n
LR

-
L

FE

!T

PLAN

Y

of

&

I"——i.n—-i

Fig. 49

+Weight density of wood = p x g, where p = density of wood
= 0.7 % 1000 = kalhi

i

Hm“'hm'm:ﬁ,gl Nim®.



The meta-centric height is given by equation (4.4) or
I

GHH?—HG

L .
where I=12xixl.ﬂ“" £ m

¥ = Volume of wood in water
=2x1xh=2x1x.56=112m’

GM:-éx-isz—-ﬂ,u:ﬂ.ldEB—ﬂ.iZ:I.ﬂ:H g

Problem 4.10. A solid cylinder of diameter 4.0 m has a height of 3 metres. Find the meta-centric height
of the cylinder when it is floating in water with its axis vertical. The sp. gr. of the cylinder = 0.6.

Sol. Given :
Dia. of cylinder, D=40m — "‘”‘;_"[
Height of cylinder, h=3.0m
Sp. gr. of cylinder =0.6 L
Depth of immersion of cylinder
=06x30=18m
: aB=18_09m
- 5 =0
and AG=3=15m
BG=AG -AB
=15-09=0.6m Fig. 4.10
Now the meta-centric height GM is given by equation (4.4)
oM=L _pG
But I =M.O.L about y-y axis of the plan of the body
A N
.HD"‘ “x{d.ll]‘
and ¥ = Volume of cylinder in water

= -:—.DI » Depth of immersion
= 3{4)2 % 1.8 m

T 4
X «(40)
oM=—2 ~06

-Ex {4.!]}1 x 1.8

2
- i'ﬂ—_ﬂ.ﬁnﬁuﬂ.ﬁrﬂ.ﬁ _0.6=-005m. Ans.

— ve sign means that meta-centre, (M) is below the centre of gravity (G).



4.7. CONDITIONS OF EQUILIBRIUM OF A FLOATING AND SUB-MERGED BODIES

A sub-merged or a floating body is said to be stable if it comes back to its original position after a slight
disturbance. The relative position of the centre of gravity (G) and centre of buoyancy (B,) of 4 body determines
the stability of a sub-merged body. -

4.7.1. Stability of a Sub-merged Body. The position of centre of gravity and centre of buoyancy in
case of a completely sub-merged body are fixed. Consider a balloon, which is completely sub-merged in air.
Let the lower portion of the balloon contains hieavier material, so that its centre of gravity is lower than its
centre of buoyancy as shown in Fig. 4.12 (a). Let the weight of the balloon is W. The weight Wis acting through
G, vertically in the downward direction, while the buoyant force Fj is acting vertically up, through B. For the
equilibrium of the balloon W = Fj. If the balloon is given an angular displacement in the clockwise direction
as shown in Fig. 4.12 (a), then Wand Fy constitute a couple acting in the anti-clockwise direction and brings
the balloon in the original position. Thus the balloon in the position, shown by Fig. 4.12 (a) is in stable
equilibrium.

~
fi .
. i
fw ﬁ
Fa
(a) (B) (€)
STABLE EQUILIBRIUM UNSTABLE EQUILIBRIUM NEUTRAL EQUILIBRIUM

Fig. 4.12. Stabilities of sub-merged bodies.

(2) Stable Equilibrium. When W = Fj and point B is above G, the body is said to be in stable
equilibrium.

(b) Unstable Equilibrium. If W = Fg, but the centre of buoyancy (B) is below centre i

. ' of :

llf:buflym inunstable equilibrium as shownin Fig. 4.12 (b). A slight displacement to the body, in thﬁtlrctiiﬂﬂ
direction, gives the couple due to W and Fj also in the clockwise direction. Thus the body does not return to
its original position and hence the body is in unstable equilibrium,

(c) Neutral Equilibrium. If Fy = W and B and G are at the same poi . i the
body is said 10 be in Newtral Equilibriom, . point, as shown in Fig. 4.12 (¢),

|



—

4.7.2. Stability of Floating Body. The stability of a floating body is dﬂﬂ"“_m‘:d fm.m the position of
Meta-centre (M). In case of floating body, the weight of the body is equal to the weight of liquid displaceq

(@) Stable Equilibrium. If the point M is above G, the floating body will be in stable equilibrium 4
shown in Fig. 4.13 (a). If a slight angular displacement is given to the floating body in the clockwise directiop,
the centre of buoyancy shifts from B to B such that the vertical line through By cuts at M. Then the buoya
force Fp through B, and weight W through G constitute a couple acting in the anti-clockwise direction apg
thus bringing the floating body in the original position.

DISTURBING
I ~% COUPLE w_j‘

I my
W[ LY T

(1

I
(i) ,
(a) Stable equilibrium M is above G (b) Unstable equilibrium M is below G.
' Fig. 4.13. Stability of floating bodies.
(b) Unstable Equilibrium. If the point M is below G, the floating body will be in unstable equilibrium
as shownin Fig. 4.13 (b). The disturbing couple is acting in the clockwise direction. The couple due to buoyant
force Fp and W is also acting in the clockwise direction and thus overturning the floating body.

(c) Neutral Equilibrium. If the point M is at the centre of gravity of the body, the floating body will
be in neutral equilibrium.



5.1. INTRODUCTION

Kinematics is defined as that branch of science which deals with motion of particles without considering
the forces causing the motion. The velocity at any point in a flow field at any time is studied in this branch of
fluid mechanics. Once the velocity is known, then the pressure distribution and hence forces acting on the fluid
can be determined. In this chapter, the methods of determining velocity and acceleration are discussed.
52 METHODS OF DESCRIBING FLUID MOTION

The fluid motion is described by two methods. They are— (i) Lagrangian Method, and (if) Eulerian
Method. In the Lagrangian method, a single fluid particle is followed during its motion and its velocity,

acceleration, density, etc. are described. In case of Eulerian method. the velocity, acceleration, pressure, density
etc. are described at a point in flow field. The Eulerian method is commonly used in fluid mechanics.

5.3. TYPES OF FLUID FLOW

The fluid flow is classified as
g't}smdjr and unsteady flows ;
(if) Uniform and non-uniform flows ;

{l‘ﬁj:l_mninnmd rbulent flows ;

[{u}ﬂomp:ﬁ:tihlt-and incompressible flows ;

[vﬂmﬁmdﬂhmuﬁmakﬂm;md

{vg‘}j)m,twumdt‘mwdimnsiun:]ﬂnm.

5.3.1. Steady and Unsteady Flows. Steady flow is defined as that type of flow in which the fluid

characteristics like velocity, pressure, density, etc. at a point do not change with time. Thus for steady flow,
, we have

7 (Bl (L

where (xg, ¥o. 2g) is a fixed point in fluid field.

Unsteady flow is that type of flow, in which the velocity, pressure of density al a point changes with
respect to time. Thus, mathematically, for unsteady flow

(%FL =0, (%L # 0 ete.
Yo % Yo Za



!mﬂm and Non-uniform Flows. Uniform flow is defined as that type of flow in which the

velocity at any given time does not change with respect to space (i.e., length of direction of the flow),
Mathematically, for uniform flow

-
= oonsiant
where 9V = Change of velocity
d s = Length of flow in the direction 5. :
Non-uniform flow is that type of flow in which the velocity at any given time changes with respect to
space. Thus, mathematically, for non-uniform flow,

[a—vl 20
a" = copstant

5.3.3, Kaminar and Turbulent Flows. Laminar flow is defined as that type of flow in which the fluid
particles move along well-defined paths or stream line and all the stream-lines are straight and parallel, Thus
the particles move in laminas or layers gliding smoothly over the adjacent layer. This type of flow is also called
stream-line flow or viscous flow.

Turbulent flow is that type of flow in which the fluid particles move in a zig-zag way. Due to the
movement of fluid particles in a zig-zag way, the eddies formation takes place which are responsible for high

ﬂ_ﬂﬂ'ﬂ_lﬂﬂ. For a pipe flow, the type of flow is determined by a non-dimensional number ":_—D called the
R'B_‘:',I'I'ID]_II number.
where D= Diameter of pipe
V = Mean velocity of flow in pipe
and  v=Kinematic viscosity of fluid,

If the Reynold number is less than 2000, the flow is called laminar. If the Reynold number is more than
4000, it is called trbulent flow. If the Reynold number lies between 2000 and 4000, the flow may be laminar

or turbulent.
ss.yémmhle and Incompressible Flows. Compressible flow is that type of flow in which the

density of the fluid changes from point to point or in other words the density (p) is not constant for the fluid.
Thus, mathematically, for compressible flow

p # Constant
Incompressible flow is that type of flow in which the density is constant for the fluid flow. Liquids are
generally incompressible while gases are compressible. Mathematically, for incompressible flow
p = Constant.

5.3.6. One, Two and Three-Dimensional Flows

Dudhuﬂmﬂﬂwisuuttypcufﬂnwinwhichmuﬂgw ity i i

: ; parameter such as velocity is a function

of time and one space m*:ﬂmﬁl:ﬂﬂl?- say x. For a steady one-dimensional flow, the velocity is a function of

one-space-co-ordinate only, variation of velocities in other two mutuall perpendicular directions is

assumed negligible. Hence mathematically, for one-dimensional flow v -
. H=EI}+lf=ﬂ-mdwuﬂ

where u, v and w are velocity components in x, y and » directions respectively,



—

mﬂwnﬂriumwmﬂﬂw in which the velocity is a function of time and two
rectangular space co-ordinates say x and y. For a steady two-dimensional flow the velocity is a function of two
space co-ordinates only. The variation of velocity in the third direction is negligible. Thus, mathematically for
two dimensional flow

u=filx.y) v=fix y) and w=0.
WMEMWﬂMthMWMhIMmdeM
mutually perpendicular directions. But for a steady three-dimensional flow the fluid parameters are functions
of three space co-ordinates (x, y and z) only. Thus, mathematically, for three-dimensional flow
u=filxy. 2, v=hilxy w=flxyi
£4. RATE OF FLOW OR DISCHARGE ((Q)

It is defined as the quantity of a fluid flowing per second through a section of a pipe or a channel. For

an incompressible fluid (or liquid) the rate of flow or discharge is expressed as the volume of fluid flowing

across the section per second. For compressible fluids, the rate of flow is usually expressed as the weight of
fluid flowing across the section. Thus

(i) For liguids the units of Q are m’/s or litres/s
(if) For gases the units of @ is kgf's or Newton/s
Consider a liquid flowing through a pipe in which

A = Cross-sectional area of pipe

V = Average velocity of fluid across the section

Then discharge O=AxV. ~{5.1)

5.5, CONTINUITY EQUATION

The equation based on the principle of conservation of mass is called continuity equation. Thus for a
fluid flowing through the pipe at all the cross-section, the quantity of fluid per second is constant. Consider
two cross-sections of a pipe as shown in Fig. 5.1.

Let  V, = Average velocity at cross-section 1-1

p; = Density at section 1-1 : ® @
A, = Area of pipe at section 1-1 _ |- r“ ‘
and Vi, Py A are coresponding valves at section, 2-2. DIECTION : ,

OF Fulr
Then rate of flow at section 1-1  =p4, V)
Rate of flow at section 2-2 = paA;Vs TM"L‘"'
According to law of conservation of mass o ©
Rate of flow at section 1-1 = Rate of flow at section 2-2
or pi V) = pataVa .(5.2)  Fig.5.1. Fluid flowing through a pipe.

Equation (5.2) is applicable to the compressible as well as incompressible fluids and is called
Continuity Equation. If the fluid is incompressible, then p; = p; and continuity equation (5.2) reduces to

AV = A1, -[5.3)

Problem 5.1. The diameters of a pipe at the sections | and 2 are 10 cm and 15 em respectively. Find

the discharge through the pipe If the velocity of water flowing through the pipe at section | is 5 m/s. Determine
also the velocity at section 2.

Sol. Given :
At section 1, Dy=10cm=0.1 m.



Av= S @) =5 (1) = 007854 m? ® ®

FI-!-*r S Oy = W om jl,...rp_l“._.
Atssction 2, Dy=15cm=0.15m | |
A,-E{.l:}’-ﬂﬂl?ﬁ?m’ r ~—~——
() Discharge through pipe is given by equation (5.1) Fig. 5.2
or E-A[Hv|

= 007854 x 5 = 0,03927 m’/s. Ans.
Using equation (5.3), we have AV, =A.V;

: AV _ 007854
(i) . Vym 5 =767 ———%50=222m/s. Ans.

Problem 5.2. A 30 cm diameter pipe, conveying water, branches into two pipes of diameters 20 cm
and |5 cm respectively. If the average, velocity in the 30 cm diameter pipe is 2.5 m/s, find the discharge in this
pipe. Also determine the velocity in }5 cm pipe if the average velocity in 20 cm diameter pipe is 2 m/s.

Sol. Given :
- "'-1. TII:,_-F-'--i..-r"‘
Fig, 5.3
D| =3cm=030m
A= Dy =1 x 3% = 007068 m?
F|-215]“|’!
Dy=20cm=020m
ﬂ:-i—(:}’-fx.huﬂau m?,
V=12 m/s
Dy=15cm=0.15m

L
" Ay= 7 (157 = 3 %0225 = 0.01767 m?

Find (/) Discharge in pipe 1 or Q,
- () Velocity in pipe of dia. 15 cm or V

Let Q) Q; and @ are discharges in pipe 1,2 and 3 respectively,
Then according to continuity equation

Qi=0:+0y (1)



(i) The discharge Q, in pipe 1 is given by
Q) =A,V, =0,07068 X 2.5 m’/s = 0.1767 m’/s. Ans.
(if) Value of V3
Q;=A;V, = 0314 x 2.0 =.0628 m’/s
Substituting the values of Q, and Q, in equation (1)
0.1767 = 0.0628 + Q,
o Q3 =.1767-0.0628 =0.1139 m*/s
But Q1=A3 X V3=.01767xV; or .1139=.01767xV;

1139
Vy= o176 ™ 6.44 m/s. Ans.




Dynamics of Fluid Flow

6.1. INTRODUCTION

In the previoss chapter, we studied the velocity and acceleration at a point in a fluid flow, without
taking into consideration the forces causing the flow, This chapter includes the study of forces causing fluid
flow. Thus dynamics of fluid flow is the study of fluid motion with the forces causing flow. The dynamic
behaviour of the fluid flow is analysed by the Newton's second law of motion, which relates the acceleration
with the forces. The fluid is assumed to be incompressible and non-viscous.

6.2. EQUATIONS OF MOTION
According to Newion's second law of motion, the net force F, acting on a fluid element in the direction
of x is equal to mass m of the fluid clement multiplied by the acceleration a, in the x-direction. Thus
mathematically,
F.=ma, C (61)
In the fluid flow, the following forces are present :
{:_l F, gravity force.
(i) F,, the pressure force.
@F,, force due to viscosity.
(iv) F,, force due to turbulence.
(v).F,, force due to compressibility.
Thus in equation (6.1), the net force
F,l{F‘ "'{'Fp]h""lrFl']-l"":FrlI"‘{'Frr
(i) If the force due to compressibility, F, is negligible, the resulting net force
Fo= (Fu+ (Fpl+ B+ ),
and equation of motions are called Reynold’s equations of motion.
(i) For flow, where (F) is negligible, the resulting equations of motion are known as Navier-Sto
Equation. e
(idd) If the flow is assumed to be ideal, viscous force (F,) is zero and equation of motions are known as
Euler’s equation of motion.

6.3. EULER'S EQUATION OF MOTION _

This is equation of motion in which the forces due to gravity and pressure are taken into consideration.
This is derived by considering the motion of a fluid element along a stream-line as :

Consider a stream-line in which flow is taking place in S-direction as shown in Fig. 6.1. Consider a
cylindrical element of cross-section dA and length dS. The forces acting on the cylindrical element are ;

1. Pressure force pdA in the direction of fow.



2. Pressure force [p +%ds ]dﬂ. opposite to the direction
of flow.

3. Weight of element pgdAds.

Let 0 is the angle between the direction of flow and the
line of action of the weight of element.

The resultant force on the fluid element in the direction of
& must be equal to the mass of fluid element x acceleration in the
direction §.
ap
pdA -\ p + ﬂIdI dA — pgdAds cos B
= pdAds = a, (6.2)

where a, is the acceleration in the direction of 5.

dv
Now a, = g where v is a function of s and 1.

_Svds v _viv v ds _ Pgd Ads
asdt @ as dt fa) (b}
: v
1f the flow is steady, i Fig. 6.1. Forces on a fuid element,
i o YOV
i Y ds

Substituting the value of a, in equation (6.2) and simplifying the equation, we getl

-%dsdﬂ.—pgdﬂdscus Bnp:.ﬁ!d:x%

EiE dp viv
Dividing by pdsd, vp—m—gmﬁﬂ ey

ap viv
—— 4 pecosB+p—=0
or pds E ag

dz
But from Fig. 6.1 (b), we have cos @ = i

1d9p dz wiv dp
— S 4g=e—=0 o — vy = )
pﬂ!+gdr+ﬂs or p+gdz+
dp
or o LRy IO (63)
—I—._._H-

Equation (6.3) is known as Euler’s equation of motion,

Bemnoulli’s equation is obtained by integrating the Euler’s equation of motion (6.3) as
IEE +J-E¢il' + | vdv = constant
P
1f flow is incompressible, p is constant and

E+F+§=mmm



or £+z+—=mmnt

Pg 2g
£ + 5— + z = constant
Pe  2g
Equation (6.4) is a Bernoulli’s equation in which

or

.(64)

-I;E- pressure encrgy perumtwmght of fluid urpmmHud

e TR _—

Vv¥2g = kinetic energy per unit weight or kinetic Head.

z = potential energy per unit weight or potential Head.
6.5. ASSUMPTIONS

The following are the assumptions made in the derivation of Bernoulli’s equation :
(1) The fluid is ideal, i.e. viscosity is zero  (§i) The flow is steady
(iip) The flow is incompressible (iv) The flow is irrotational.



Sol. Statement of Bernoulli’s Theorem. It states that in a steady, ideal flow of an incompressible
fluid, the total energy at any point of the fluid is constant. The total energy consists of pressure energy, kinetic
encrgy and potential energy or datum energy. These energies per unit weight of the fluid are : .

Prﬂsumcmrg}ei%

Kinetic encrgy z%

Datum energy =z
Thus mathematically, Bernoulli’s theorem is written as

Boal e
= + 22 + z = Constant.

Derivation of Bernoulli's theorem. For derivation of Bernoulli’s theorem, the Articles 6.3 and 6.4
should be written.

Assumptions are given in Article 6.5.

Problem 6.4. The water is flowing through a pipe having diameters 20 cm and 10 cm at sections 1 and

2 respectively. The rate of flow through pipe is 35 litresfs. The section 1 is 6 m above datum and section 2 is
4 m above datum. If the pressure at section 1 is 39.24 Nien?, find the intensity of pressure at section 2.

sﬂ]tﬁi‘ﬂ:n:
AtSectionl, D;=20cm=02Zm

Ag= E (27=00314m* By

.2q
py = 39.24 Nfcm® Km2
= 39.24 x 10* N/m? -
Zy=60m T
AtSection2, D,=0.10m em ﬂ,?;%
b ,
A2 =7 (0.1 = 00785 m? # T “
Z=4m = =
pa=?

Fig. 6.3



and

35 x 3
Rate of flow, E-JSHI.I'I.-—IMJ 0.035 m’/s

Huw E‘ = Alvl = AjFE

292 _0035
Vi= o= iy = Meme

_Q._0035
Va= o= Gorgs = 4456 mis

Applying Bernoulli’s equation at sections 1 and 2, we get

2 2
1o B o AP

28 PE 28

3924x10° (L14P o pr (4456
1000 x 9.81 * 2x9.81 © " 1000 x 9.81 @ 2x 9.81

+ 4.0

P2
40 + 0.063 + 60 = 9810

+1.012 + 4.0

Pi
46.063 = 9810

+5.012

. i . S . &
X gsm-qﬁ.ﬂﬁj 5.012 = 41.051

P2 = 41,051 x 9810 Njm?
41,051 x 9810
10*

Problem 6.5, Water is flowing through a pipe having diameter 300 mm and 200 mm at the bottom and

Nicm? = 40.27 Njem®., Ans.

upper end respectively. The intensity of pressure a the bottom end is 24.525 Nicm® and the pressure at the
upper end is 9.81 Njem®. Determine the difference in datum head if the rate of flow through pipe is 40 ligfs.

Sol. Gaven :
Section 1, Dy =300 mm =03 m
py = 24.525 Njem® = 24.525 x 10* Nfm? ®
Section 2, D; =200 mm = 0.2 m Du-;l!--n
po = 9.81 Njcm® = 9.81 x 10° N/m? P = 081 Mot
Rate of flow = 40 liv's
40 3
Q=1pop =004 m/s
Now 31F1531F1=ﬂ1:ﬂ[hw = .04

V=2 = 2 20,5658 s et
Ay EDI! E{HJ}! TUM LINE

= 0.566 m/s
04 04 0.04

Vy=—=

A4 = i
20 (2P

i
rp©

= 1274 mfs



Applying Bernoulli’s equation at (1) and (2), we get
2 2
B R, R,

Pg 28 pg 28
24525:10*+.5£ﬁx_sm+ _ 981x10* +{1.274]’
1000x9.81 © 2x981 T 7000x981  2x9.81

54+324+z;=10+1.623 +z,

2532+2;=11.613 +

7-2,=2532-11.623=13.697=13.70m
-. Difference in datum head = z, —z; = 13.70 m. Ans.
!"l'nﬂﬂli.i.I?lemnhﬁﬁng#mgﬁnrmph#hﬂhfmmmmmﬁm.m“
the upper end and 300 mm at the lower end, at the rate of 50 litres|s. The pipe has a slope of 1 in 30. Find the
pressure at the lower end if the pressure at the higher level is 19.62 Nfcnr’.
Sol. Given :
Length of pipe, L=100m
Dia. atthe upperend, Dy=600mm=0.6m
Area, Al-ﬂrﬂ,1=~:—x[.ﬁ]==ﬂ.2ﬂ?m"
Py = pressure at upper end = 19.62 Njem”
= 19.62 x 10* N/m*
Dia. at lower end, D; = 300 mm =03 m

+I

- Area, Ag= 5 Dgt =7 (3) = 007068 m
E:HMDEHDW:SUHWE=%-UH5DI’W
Let the datum line is passing through the centre of the lower end.
Then z;=0
1100210
As slope is 1 in 30 means =1=ﬁ”1m'3m
Also we know Q=A,Vi=4AV;
g_uo0o i
F"A ET] 0.1768 m/sec = 0.177 my/s
Q__05 _ o
e Va= 4= G068 = 07074 misec = 0.707 m/s
Applying Bernoulli's equation at sections (1) and (2), we get
2 2
El-+ui+=_l-£=—n+:=——+=:

[ pg 28
1962x10° 177 10

.
or 1000% 981 2x981 ' 3 " pg ' 2x%9.81

+0

e m+m1m+3au.ﬁ+um



P2

or 23335 -0.0254 =

1000 x 9.81
or P2 =233 x 9810 N/m? = 228573 N/m? = 22.857 N/em®.
6.6. BERNOULLI'S EQUATION FOR REAL FLUID cdeo 1

The Bernoulli’s equation was derived on the assumption that fluid is inviscid (non-viscous) and
therefore frictionless. But all the real fluids are viscous and hence offer resistance to flow. Thus there are

oo AT e —

always some losses in fluid flows and hence in the application of Bemoulli’s equation, these losses have to be
taken into consideration. Thus the Bernoulli’s equation for real fluids between point 1 and 2 is given as

2 2
P1 Vi P2 V2 551
TR TR B TR (

where s loss of energy between point 1 and 2.

——




6.7. PRACTICAL APPLICATIONS OF BERNOULLYI'S EQUATION
Bernoulli’s equation is applied in all problems of incompressible fluid flow where encrgy considera-
tions are involved. But we shall consider its application to the following measuring devices :
1. Venturimeter.
2.-Orifice meter.
3. Pitot-tube.
6.7.1. Venturimeter. A venturimeter is a device used for measuring the rate of a flow of a fluid flowing
through a pipe. It consists of three parts :
(7) Ashort converging part, (if) Throat, and (iii) Diverging part. ILis based on the Principle of Bernoulli’s
equation.
Expression for Rate of Flow Through Venlurimeter
Consider a venturimeter fitted in a horizontal
pipe through which a fluid is flowing (say water), as
shown in Fig. 6.9.
Let d, = diameter at inlet orat section (1), _ ¥

p, = pressure at section (1) — i
wy = velocity of fluid at section (1),
a = area at section (1) = %dﬁ B 60 Vi
and dy, o, V2, @ are corresponding values at section (2).
Applying Bemnoulli’s equation at sections (1) and (2), we get
P1 1"'12 P2 3

V2
—fm—d 1=+
pg 28 1T pg g 2



As pipe is horizonial, hence =23 4
2

p
pov pow pPi=p2_¥1i N
xR Tk BN

PE 28 P8 28
BitF—l;Eﬁhlhdiﬁcmdp:mhldaﬂumﬁmI_Ind?lﬂdﬂi'“[“]mﬁ or E'f'f-&

Slhﬁmﬁnglhhvﬂu:nt%mﬁ:m:qnﬁnn.ﬂﬁ‘

W ow? )
h= 2% 28 {6.6)
]lﬂw .Fpl!inu mmilltlilb‘ Bqlil“l.ﬂﬁ at m.ﬂ!l 1 Iﬂﬂ 2

a2vz
Iy = d;¥y Or "|-T"'

Substituting this valee of v, in cquation (6.6)

' (1111.]’
Jlnuz—:— - -i: ]—EEI‘ =p_=i B
% % %| o) %| e
e ay’
oF vy :Eh—f'—fui ==
. L] ﬂlz-ﬂ':tz m‘l’m
Discharge, @ = ap;
= -—_ﬂl L3 $"_—dlnz
R 5
Equation (6.7) gives the discharge under ideal conditions and is called, theoretical discharge. Actual
discharge will be less than theorctical discharge. =
i
. s ™ L
{ Q ﬂﬁrﬂ'ﬁﬁ .(6.8)

where C, = Co-efficient of venturimeter and its value is less than 1,

Value of ‘h' given by dilferential U-tube manometer

Case L Letthe differential manometer contains a liquid i : 2 s
L g quid which is heavier than the liquid flowing through

Sy, = sp. gravity of the heavier liquid
Sge - gravity of th lquid flowing trough pipe

e iffercnce of the heavier liquid column in U-wbe
Then S

hsx| —-
) [ 5 1] (6.9

‘Case IL If the differential manometer contains a liquid . ;
. the pipe, the value of h is given by quid which lighter than the liquid flowing throvgh



35
h-:llr-&:l {610)
where ;= sp. gr. of lighter liquid in U-tube

3, = 5p. gr. of fluid flowing through pipe

x = difference of the lighter liquid columns in U-tube.

fmCHl Ill. Inclined Venturimeter with Differential U-tube manometer. The above TwWo Cases arc

given for a horizontal venturimeter. This case is related to inclined venturimeter having differential U-tube
manometer, Let the differential manometer contains heavier liquid then h is given as

P P2 S5y

he| =4z |= | == =x|—=1 (611

(=) (Bea)-{2-1] ‘
Case IV. Similarly, for inclined venurimeter in which differential manometer contains a liquid which

is lighter than the liquid flowing through the pipe, the value of A is given as

2l P2 3
h=|l=+z |=-| = mx|ll=-— .(6.12)
[pg ‘] [px”i] [ S,

Problem 6.10. A horizontal venturimeter with inlet and throat diameters 30 cmand 15 cm respectively
is used to measure the flow of water. The reading of differential manometer connected to the inlet and the
throat is 20 cm of mercury. Determine the rate of flow. Take Cy = 0.98.

Sol. Given :

Dia. at inlet, dy =30 cm

= Area atinlet, ay = i—d,z 3 E{:!l]f = 706.85 cm*
Dia. at throat, dy = 15 cm

a= %:- « 15% = 176.7 cm?

Cld = ﬂ .g'ﬂ
Reading of differential manometer == 20 cm of mercury.
Difference of pressure head is given by (6.9)

L Fi l
or h=x sd-

where S, =5p- gravity of mercury = 13.6, 5, = sp. gravity of water = 1

.zﬂ[l%'—ﬁ-- l]:lﬂ'x 12.6 cm = 252.0 cm of waler.

The discharge through venturimeler is given by Eqn. (6.8)
0 = Ca s x VIgh

a1y
: 76.7
008 x TOSBSXIT6T __ prers

V(706.85) - (176.7)



86067593.36 __ _ B6067593.36
= Va00e360 - 312220 6844

= 125756 cm’/s = lﬂgﬁ lit/s = 125.756 lit/s. Ans.

Problem 6.11. An oil of sp. gr. 0.8 is flowing through a vmrmﬂﬂ*ﬁﬂvﬂs inlet diameter 20 cm and
throat diameter 10 cm. The oil-mercury differential manometer shows a reading of 25 cm. Calculate the
discharge of oil through the horizontal venturimeter. Take C; = 0.98.

Sel. Given :
Sp. gr. of oil, 5, =08
Sp. gr. of mercury, Sy=13.6

Reading of differential manometer, x = 25 em

< Difference of pressure head, ﬁ:x[i—l- 1]

=15[1!13_§'1 em of oil = 25[17 - 1] = 400 cm of oil.

Dia. at inlet, dy =20 cm

ay= % dy? = % % 207 = 314.16 em’

dy = 10 cm

azzj:-xIDﬂaTE.Sdcmi

Cag=0.98
The discharge { is given by equation (6.8)
e
Q= Cy——=—==xVigh
Va,? - Tay?
- 008 x 314.16 x 78.54 < VIX BT 300
V(314.16)° - (78.54)
2142137568  21421375.68 - ,
- 304

= 70465 cm’/s = T0.465 litres/s. Ans.

Problem 6.12. A horizontal venturimeter with inlet diameter 20 cm and throat diameter 10 cm is used

tomeasure the flow of oil of sp. gr. 0.8, The discharge of oil through venturimeter is 60 litres/s, Find the readi
of the oil-mercury differential manometer. Take Cy = 0.98. reading

Sol. Given : d; = 20 em

n%m"amlﬁm’
dy = 10 cm
ﬂ:-EH 10% = 78.54 cm*

C, =098
Q = 60 litres/s = 60 x 1000 cm™/s



Using the equation (6.8), Q = C; ——2__ « vIgh

V '“1l - ﬂ:‘
V(314.16) - (78.54)*
304 » 60000
n vk = o068 78 = 179%

h = (17.029)* = 289.98 cm of oil

[ S, where
. ok s_,'ll 5, = sp. gr. of mercury = 13.6

A 5. = sp. gr.of oil = 0.8
28998 = x H_llnl& ¥ = Reading of manomeler

| 08

x= IE::E =18.12 cm. Ans.

. Reading of oil-mercury differential manometer = 18.12 cm. Ans.

Problem 6.13. A horizontal venturimeter with inlet diameter 20 cm and throat diameter 10emis umd
to measure the flow of water. The pressure at inlet is 17.658 Nicm? and the vacuum pressure af the throat s

30 cm of mercury. Find the discharge of water through venturimeter. Take C4 = 0.98.

Sol. Given :
Di.lltilﬂﬁl. d1|=mtlﬂ
s ﬂi = % b [.m}i = 314.1& EI:I].I
Dia. at throat, dy =10 cm
a -%x 10° = 78.74 cm®
py = 17.658 Njem? = 17.658 10° N/m?
i
kg . A 17.658 = 10 o
p for water = lﬂﬂﬂmj and =R .81 x 1000 18 m of water
P2 _ _ 30 cm of mercury
= —0.30 m of mercury = uﬂﬂilﬂ.ﬁ = v-_-lln__lzlﬂ. m of water
n P
2 _Et=18-(-40
Differential head =f"pg 08 (—4.08)

= 18 + 4.08 = 22.08 m of water = 2208 cm of water
The discharge Q is given by equation (6.8)
iy
=0 -——L X m
ﬂ . H .II1= L ﬂ]=
98 x 314.16 x TR.54 AT
V(314.16)° - (78.74)

= @Lﬁgﬂ % 165555 cm’/s = 165.555 lit's. Ans.



_ 9404631778
784.4

6.7.3. Pitot-tube. It is a device used for measuring the velocity of flow at any Fﬂ'll.'l‘ in a pipe or a
channel. It is based on the principle that if the velocity of flow at a
point becomes zero, the pressure there is increased due to the conver-
sion of the kinetic energy into pressure energy. In its simplest form,
the pitot-tube consists of a glass tube, bent at right angles as shown
in Fig. 6.13.

The lower end, which is bent through 90° is directed in the
upstream direction as shown in Fig. 6.13. The liquid rises up in the
tube due 1o the conversion of kinetic energy into pressure energy. The
velocity is determined by measuring the rise of liquid in the tube.

Consider two points (1) and (2) at the same level in such a
way that point (2) is just at the inlet of the pitot-tube and point (1) is
far away from the tube.

Let Py = intensity of pressure at point (1)

vy = velocity of flow at (1)
pa = pressure at point (2)
v; = velocity at point (2), which is zero
H = depth of tube in the liquid
h = rise of liquid jn the tube above the free surface.

Applying Bernoulli’s equations at poinis (1) and (2), we get
2 2
BB
But z = 2, as points (1) and (2) are on the same line and vz =0,

%upmhﬂ st(l)=H

%nprumuhud at (2) = (h+H)
Substituting these valoes, we gel
2

Hso= (b H)

= 13741425 cm’/s = 137.414 litres/s. Ans.

. o
- hr?&'— or W =vigh

This is theoretical velocity. Actual velocity is given by
':""'l]lﬁ' - E,'!'IE}I_

where C, = Co-efficicnt of pitot-tube

».  Velocity at any point v = c,VZgh wo(B.14)

Velocity of flow in a pipe by pitot-tube. For finding the velocity al any point in a pipe by pitot-tube,
the following arrangements are adopted :

1. Pitot-tube along with a vertical piezometer tube as shown in Fig. 6.14.

2. Pitot-tube connected with piezometer tube as shown in Fig. 6.15.



3. Pitwt-tube and vertical piczometer hube connected with a differential U-tube manometer as gl
in Fig. 6.16.

Fig. 6.16 Fig. 6.17

4. Pitot-static ube, which consists of two circular concentric tubes one inside the other with some
annular space i between as shown in Fig. 6.17. The outlet of these two tubes are connected 1o the differential
manometer where the difference of pressure bead ‘A’ is measured by knowing the difference of the levels of

uwﬁﬂmmmh-x[?-l].

Problem €.24. A pitot-static tube placed in the centre of a 300 mm pipe line has one orifice poiniing
upstream and other perpendicular to it. The mean velocity in the pipe is 0.80 of the central velocity, Find the
i hnpw*mfﬁm'#’mmhmm#mmqm Take the
co-efficient of pitot tube as C, = 0.98.

Sol. Given : ‘

Dia. of pipe, d =300 mm = 030 m

Diff. of pressure head, h = 60 mm of water = 06 m of wa
C,=098

Mean velocity, V = 0.80 x Central velocity

Central velocity is given by equation (6.14)

=C,Vigh =098 xVZx U8 x OF = 1.063 m/s
V= 0.80 x 1.063 = 0.8504 m/s

Discharge, ﬂ-ﬂmufﬁ:u?‘"
'":_E"F'E[‘m}i“um’“ﬂ-ﬁu’m Ans.



. iy 6.15. Find the velocity of the flow of an oil through a pipe, when the n‘iﬂ"ﬂ:ﬂlte of mercury
level in & differential U-tube manometer connected to the two tappings of the pitot-tibe is 100 mm. Take
co-gfficient of pitot-tube 0,98 and sp. gr. of oil = 0.8.

Sol. Given :

Diff. of mercury level, x= 100 mm = 0.1 m

Sp. gr. of oil, 5, =0.8

Sp. gr. of mercury, 5, =13.6

C.=098
. 5 13.6 .
Dil. of pressure head, h=x|=Lt-1|=.1| =-1|=1.6mofoil
s, 0.8

~ Velocity of flow = C,VIgh =0.98 VI % 9.51 x 1.6 = 549 m/s. Ans.

Problem 6.26. A pitot-static ube is used to measure the velocity of water in a pipe. The stagnation
pressure head is 6 m and static pressure head is 5 m. Calculate the velocity of flow assuming ”'flff-'“ffif“—"“
of tube egual 1o 0.98, (A.M.LE., Winter, 1979)

%ol. Given :

Stagnation pressure head, h,=6m

Static pressure head, h,=5m

s h=6-5=1m

Velocity of flow, V=C,Vigh=098vyZx081 =1 =434m/s. Ans.

Problem 6.27. A sub-marine moves horizontally in sea and has its axis 15 m below the surface of water.
A pitot-tube properly placed just in front of the sub-marine and along its axis is connected to the two limbs of
a U-tube containing mercury. The difference of mercury level is found to be 170 mm. Find the speed of the
sub-marine knowing that the sp. gr. of mercury is 13.6 and that of sea-water is 1.026 with respect of fresh
(AMLE., Winter, 1975)

water.
Sol. Given :
Diff. of mercury level, x=170mm=0.17m
Sp. gr. of mercury, §,=13.6
Sp. gr. of sca-water, 8, = 1.026
5 13.6
- = £ _ =1 — = L
. h x[E- 1] "ﬁ[_mzr. 1] 2.0834 m
V= vIgh = VI = 081 x 20834 = 6393 m/s
60
=ﬁ'393t’$“ km/br = 23.01 kny/hr. Ans.

Problem 6.28. A pitot-tube is inserted in a pipe of 300 mm diameter. The static pressure in pipe is
100 mm of mercury (vacuum). The stagnation pressure at the centre of the pipe, recorded by the pitot-tube is
0.981 Nicm®, Calculate the rate of flow of water through pipe, if the mean velocity of flow is 0.85 times the

central velocity. Take C, = 0.98. (Converted to 5.1, Units, A M.LE., Summer, 1987)
Sol. Given :
Dia. of pipe, d =300 mm =030 m

Area, a:%dﬂr_ E(-3}==ﬂ-ﬂ'?ﬂﬁﬂ 3



Static pressure
bead = 100 mm of mercury (‘me]

_ 100
__Iﬂﬂﬂ: 13.6 = — 1.36 m of water
981 N/cm?® = .981 x 10* N/m*

Stagnation pressure .
Stagnation pressure bead =.931:10‘= 981 x10° _ .
Pg 1000 x 9.81
h-s::guﬁonptmthld-suﬁcpmr:hud
' =10- —136}=I.ﬂ+1_35=2.3=6mnfw:t:
Velocity at centre - ffﬂ r
Mean velocky = 0.98 x V2 x 9.81 x 236 = 6.668 m/s
< ; V = 0.85 x 6.668 = 5.6678 m/s
te of flow of water = V x area of pipe

= 5.6678 x .07068 m’/s = 0.4006 m’/s. Ans.



Orifices and Mouthpieces

7.LINTRODUCTION

Orifice is a small opening of any cross-section (such as circular, triangular, rectangular ete.) on the side
or at the bottom of a tank, through which a fuid is flowing. A mouthpiece is a short length of a pipe which is
two to three times its diameter in length, fitted in a tank or vessel containing the fluid. Orifices as well as
mouthpieces are used for measuring the rate of flow of fuid.

71.2. CLASSIFICATIONS OF ORIFICES

The orifices are classified on the basis of their size, shape, nature of discharge and shape of the upstream
edge. The followings are the important classifications :

1. The orifices are classified as small orifice or large orifice depending upon the size of orifice and
head of liquid from the centre of the orifice. If the head of liquid from the centre of orifice is more than five

times the depth of orifice, the orifice is called small orifice. And if the head of liquids is less than five times
the depth of orifice, it is known as large orifice.

2. The orifices are classified as (i) Circular orifice, (if) Triangular orifice, (iif) Rectangular orifice and
(iv) Square orifice depending upon their cross- sectional arcas.

3. The orifices are classified as () Sharp-edged orifice and (i) Bell-mouthed orifice depending upon
the shape of upstream edge of the orifices.

4. The orifices arc classified as (f) Free discharging onfices and (1) Drowned or Sub-merged orifices
depending upon the nature of discharge.

The mh-mmgnd orifices are further classified as (@) Fully sub-mug.:d Uﬂﬂﬂ!l_lﬂd [b:l Pll-ﬁl"r
sub-merged orifices.

73. FLOW THROUGH ON ORIFICE

Consider a tank fitted with a circular orifice in one of its sides as shown in Fig. 7.1. Let H be the head
of the liquid above the centre of the orifice. The liquid flowing through the orifice forms a jet of liquid wi
area of cross-section is less than that of orifice. The area of jet of fluid goes on decreasing and at a section CC,
the area is minimum. This section is approximately st a distance of half of diameter of the orifice. At this
section, the streamlines are straight and parallel 1o ':'“h other and '
perpendicular to the plane of the onifice. This section is called Vena-
contracta. Beyond this section, the jet diverges and is atiracted in the
downward direction by the gravity.

Consider two points 1 and 2as showninFig. 7.1. Point 1 is inside
the tank and point 2 at the vena-contracta, Let the flow is steady and at

a constant head H. Applying Bernoulli's equation at points | and 2. .
2 o2 :
ﬂ+i*zlgﬂ+i+;l CONTRACES,
28 g € Fig. 7.1. Tank with an orifice.
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s vy = ?'EH
This is theoretical velocity. Actual velocity will be less than this value.

74. BEYDRAULIC CO-EFFICIENTS

The hydraulic co-efficients are

1. Co-efficient of velocity, C,

2. Co-efficient of contraction, C,

3. Co-efficient of discharge, C,.

7.4.1. Co-efficient of Velocity (C,). It is defined as the ratio between the actual velocity of a jet of
liquid at vena-contracta and the theoretical velocity of jet. [t is denoted by C, and mathematically, C, is given

(1.1)

C = Actual velocity of jet st vena-contracta
. Theoretical velocity

_F "
= V3gH » Where V= actual velocity, V2gH = Theoretical velocity. ...(7.2)
The value of C, varies from 0.95 to 0.99 for different orifices, depending on the shape, size of the
m;lﬁc:lndun!h:hﬂdumﬂwhi:hﬂuwukuplm.&m}.m‘,murq:ﬂ_gﬂhuknﬁllﬁ fer

orifices.
7.4.2. Co-efficient of Contraction (C,). Itis defined as the ratio of the area of the :
to the area of the orifice. It is denoted by C,. of the jet at vena-contracta

Let a = area of orifice and
@, = area of jet at vens-contracta,
Then ¢ = 2rea of jet at vena-contracta
¥ area of ordfice
(g
. A13)

The value of C, varics from 0.61 to 0.69 depending on o -
shape and
under which flow takes place. In general, the valye qu.m?humuEufhmﬂ edorigs



c o Actual velocity x Actual arca
4= 0. " Theoretical velocity x Theoretical area
__ Actual velocity :: Actual area
" Theoretical velocity —Theoretical area
Cy=C,xC, ~.(7.4)
61 10 0.65. For general purpose the value of C, is taken as 0.62.

Problem 7.1. The head of water over an orifice of diameter 40 mm is 10 m. Find the actual discharge
and actual velocity of the jet at vena-contracta. Take Cy = 0.6 and C, = 0.98.

Sol. Given:

Head, H=10cm
Dia. of orifice, d =40 mm =0.04 m

Area,

The value of C; varies from 0.

a =7 (04 = 001256 m’

Cy=0.6
C,=0.98

Actual Discharge
@ Theoretical Discharge
But Theoretical Discharge = Vy, x Area of orifice
V., = Theoretical velocity, where Vi, = VighH =v2x 081 x 10 = 14 m/s

A i
Theoretical Discharge = 14 x 001256 = muma‘"T

= (.6

! Actual Discharge = 0.6 x Theoretical Discharge
= 0.6 x 01758 = 0.01054 m*/s. Ans.
, Actual Velocity =C =098
(i%) Theoretical velocity

Actual velocity = 0.98 x Theoretical velocity
:008x 14=13T2 m/s. Ans.

Problem 7.2. The head of water over the centre of an orifice of diameter 20 mm is I m: The actual
discharge through the orifice is 0.85 litre/s. Find the co-efficient of discharge.

Sol. Given :
Dia. of orifice, d=20mm=.02m
Area, a=5 (02 = 000314’
Head H=1m
ﬂﬂu;l discharge, © = 0.85 litres/s = 00085 m’fs
Theoretical velocity, Va=VigH =VIx 98T x 1 =4.429 m/s

. Theoretical discharge, QO = Vi x Area of orifice
= 4.429 x 000314 = 0.00139 m*/s

i _ Actal Discharge  _ 0.00085
- Co-cfficient of discharge T tieal Discharge —_—

= . Ans.
0.00139 - 61



Notches and Weirs

8.1. INTRODUCTION

A notch is a device used for measuring the rate of flow of a liquid through a small channel or a tank.
It may be defined as an opening in the side of a tank or a small channel in such a way that the liquid surface
in the tank or channel is below the top edge of the opening.

A weir is a concrete or masonary structure, placed in an open channel over which the flow occurs. It
is generally in the form of vertical wall, with a sharp edge at the top, running all the way across the open
channel. The notch is of small size while the weir is of a bigger size. The notch is generally made of metallic
plate while weir is made of concrete or masonary structure.

" 1. Nappe or Vein. The sheet of water flowing through a notch or over a weir is called Nappe or Vein.

2. Crest or Sill. The bottom edge of a notch or a top of a weir over which the water flows, is known
as the sill or crest.

8.2. CLASSIFICATION OF NOTCHES AND WEIRS

The noiches are classified as :
1. According to the shape of the opening :
{a) Rectangular noich,
(&) Triangular notch,
() Trapezoidal notch, and
(d) Stepped notch. |
2. According to the effect of the sides on the nappe :
(@) Notch with end contraction.
(b) Notch without end contraction or suppressed notch.
Weirs are classified according to the shape of the opening the shape of the crest, the effect of the sides
on the nappe and nature of discharge. The following are important classifications,
(a) According to the shape of the opening :
(i) Rectangular weir, (i) Triangular weir, and
(iii) Trapezoidal weir (Cippoletti weir)
(&) According to the shape of the crest ;

(i) Sharp-crested weir, (i7) Broad-crested weir,
(fif) Narrow-crested weir, and (iv) Ogee-shaped weir.
(¢) According to the effect of sides on the emerging nappe :
() Weir with end contraction, and (if) Weir without end contraction.

A19



8.3. DISCHARGE OV ER A RECTANGULAR NOTCH OR WEIR
The expression for discharge over a rectangular notch or weir is the same.

fc) SECTION AT
CREST

(o TRECTANGULAR MOTCH (1.1 HEtT“AHﬁ.I._l.H
ER

Fig. 8.1. Rectangular notch and weir.
Consider a rectangular notch or weir provided in a channel carrying water as shown in Fig. 8.1,
Let H = Head of water over the crest
L = Length of the notch or weir

For finding the discharge of water flowing over the weir or notch, consider an elementary horizontal
strip of water of thickness dh and length L st a depth k from the free surface of water as shown in Fig. 8.1 (¢).

The area of strip =L x dh
and theoretical velocity of water flowing through strip = vZgh
The discharge d, through strip is
d(? = Cy x Area of strip x Theoretical velocity
-Cixlxdﬁxfﬂ .m
where C; = Co-efficient of discharge.

The total discharge, @, for the whole notch or weir is determined by integrating equation (i) between
the limits 0 and H.

@= ; c,.L.fE'E,dfuc,xLuﬁE_f:n“dh

_;,1-"'1+:I

-CHHL!\JE[ EEJELH‘FE[%]”
b

I
i

=-§-E,,‘.:L:u'"f§[ﬂ]m, (8.1

Prﬂ'bllu 'l.-l. Fl-lﬂ fﬁf -dﬂﬂflﬂ'l"gﬂ ﬂrmwﬂg VEr @ rmﬂgufu-r "mch ﬂf: m !Eﬂgm H*fﬂ Il'H
constant head over the notch is 300 mm. Take C4 = 0.60.

Sol. Given :

Length of the notch, L=20m

Head over notch, H=300m=030m
Cy=0.60

Discharge, Q= % CaxL xvig |_H3"11

= 3% 0.6 2.0 x VZx BT x [30]* m¥s
=3.5435 x (0.1643 = 0.582 m*/s. Ans.



e

Problem 8.2. Determine the height of a rectangular weir of length 6 m to be built across a rectangular

channel. The maximum depth of water on the upstream side of the weir is 1.8 m and discharge is 2000 litres/s.
Take C; = 0.6 and neglect end contractions.

Sol. Given :

Length of weir, L=6m

Depth of water, Hy=18m
Discharge, @ = 2000 Tiy/s = 2 m’/s

EJEU.E
Let H is height of water above the crest of weir, and Hy = beight of weir (Fig. 8.2)
The discharge over the weir is given by the equation (8.1) as

Q-%C;xl-xfifﬂm
of lﬂ=-:-!ﬂfﬁuﬁ.ﬂxmxﬂ'm
= 10.623 H*

: __20
G e 10.623

2.0
d '( 10.623
- Height of weir, Hy=H,-H

= Depth of water on upstream side — H
=1.8-328=14T2m. Ans

Problem 8.3, The head of water over a rectangular notch is 900 mm. The discharge is 300 lires/s.
Find the length of the notch when Cy = 0.62.

FLE
= (0328 m

Sol. Given :
Head over notch, H=%cm=0%m
Discharge, g.!ﬂﬂliﬂlr-ﬂ&ma’ﬂ
Cy=0.62
Let length of notch =L
" Using equation (8.1), we have
Q=3xCyxL x V2g = H
or 0.3 =2 x 0.62 x L x VZx 98T x (0.9)"?
= 1.83 x L » 0.B538
03

¥ L-mm‘lﬂm=ﬂlm Ans.

8.4. DISCHARGE OVER A TRIANGULAR NOTCH OR WEIR
The expression for the discharge over a triangular noich or weir is the same. It is derived as :
Let  H = head of water above the V-notch
8 = angle of noich

Consider a horizontal strip of water of thickness ‘dh’ at a depth of h from the free surface of water a8
shown in Fig. 8.3,



From Fig. 8.3 (b), we have
m!_ﬂ- AC
2 OoC (H-h)
AEH[H—h}un%

]
Width of strip =AB=2AC=2(H-h)tanz

. Area of strip =2(H-h)tan %! dh Fig. 8.3. The triangular notch.

The theoretical velocity of water through strip = V2gh
»  Discharge, dQ, through the strip is
: dQ = C; x Area of strip x Velocity (theoretical)
= Cyx 2H -h) uuixdﬁu#ﬁ:’i

= 2C, (H - hy tan 5 x V2gh x g

, ; T J'" 0

. Total discharge, 0is ' Q= j zc;m—h}mixf'z_gﬁxﬁ
.zc,:'mgxﬂgﬂw-awmﬂ

=2x Cyxtan %“"'E.r:{ﬂﬁm—ﬁﬂﬂjdh
. akl, ko

0
=2xCaxton 3XV% | 3557,

=2x Cyxtan g—x‘ﬁfgﬂﬂ‘h’?_%ﬂﬂn]
IZHE‘H“H %“\@E[%HEH_%W]

--1:{:,:1-:1—:{23’ ]

lsc:,xm x V2g x H"? (8:2)
Fuuﬂgh-:nghdl"'—nmrh,ift‘,:un
B:W X "ng=1
Discharge . ﬁ*‘-"‘xﬂﬁxlumm‘fm
=1417Hm w(83)

Problem 8.4. Find the discharge over a triangular notch of angle 60° when the head over the F’-ﬂﬂﬁh
is 0.3 m. Assume Cy = 0.6.



Sol. Given :

Angle of V-notch, 8= 60°
Head over notch, H=03m
Caq=0.6

Discharge, Q over a V-notch is given by equation (8.2)
ﬂ:%}: ﬂixm“%!‘illlz_g‘kmq

8
=35 % ﬂ.ﬁun% % VEx 081 = (0.3

= 0.8182 x 0,0493 = 0.040 m*/s. Ans.

Problem 8.5. Water flows over a rectangular weir 1 m wide at a depth of 150 mm and afrerwards
passes through a triangular right-angled weir. Taking C, for the rectangular and triangular weir as .62 and

0.59 respectively, find the depth over the triangular weir.
(Osmania University, 1990 : AM.LE., Winter, 1975)

Sol. Given :

For rectangular weir, Length, L = 1 m

Depth of water, H=150mm=0.15m
Cy=0.62

For triangular weir, 8=90"
Cy=0.59

Let depth over triangular weir = H,
The discharge over the rectangular weir is given by equation (8.1) as
Qn%xﬂd-xl.xv'ﬁxﬂm

= %x 0.62x 1.0 x v % 981 x (.15 m'/s = 0.10635 m/s

The same discharge passes through the triangular right-angled weir. But discharge, {0, is given by

equation (8.2) for a triangular weir as .
-Qn%u{}}xunix vig x H®

ﬂ~lﬂﬁ35='1%ﬂ —59“*“%“'2?:!:'1“ { 8=90°and H=H,}

2 ~1—35'x 50 1 x 4429 % H,¥? = 1.3936 H,3?

0.10635
52 =0
R = S ooae = 007631
! H, =(07631)"*= 03572 m. Ans.
sA. Water flows through a triangular right-angled weir first and then over a rectangular

weir ;f"m The ;ﬂcﬁﬁar:e co-efficients of the triangular and rectangular weirs are 0.6 and 0.7

ively, If the depth qrwlﬂm,m;nignguhrmirESEﬂmfuﬂrhfdepchnfm::rnmtﬁt
fﬂ!ﬂnguh'r'mir. (A.M.LE., Summer, 1990)

Sol. Given :

For triangular weir

For rectangular weir

g =90°, Cy=0.6H=360mm=036m
L=1m,Cy=07,H=1



The discharge for a triangular weir Iu given by equation (8.2) as
Q=13 nﬂ’,:un—:\lﬁxﬂ'm
Iasx{}ﬁxm[ ]W {naﬁ]“-ﬂumﬁh

The same discharge is passing through the rectangular weir. But discharge for a rectangular weir is
given by equation (8.1) as

En%uﬂijxf’E:HM
or u.uuzngxu.nummmzmmﬂ
0.1102
or e
| 2067 =0.0533

= H=(00533""=01415m = 1415 mm. Ans,

Problem 8.6. A rectangular channel 2.0 m wide has a discharge of 250 litres per second, which is
measured by a right- angled V-notchweir. Find the position of the apex of the notch from the bed of the channel
if maximum depth of water is not to exceed 1.3 m. Take Cy = 0.62

Sol. Given :

Width of rectangular channel, L=20m

Discharge, Q=250 lits =025 m'/s
Depth of water in channel =13m

Let the height of water over V-notch = H
The rate of flow through V-notch is given by equation (8.2) as

B 2]
E-lsxﬂgxﬁ:mnznﬂm
where Cy=0.62, ©=90"
—ix 62 xvIn ﬂ[xun-—-—uﬂm

15
or ﬂlﬁ-%x 62 % 4,429 % 1 x H®
25 %15
or Hm“ﬂu 62 % 4429 - 0107

: H=(1707)*° = (1707)" = 0.493 m
Puil:inn of apex of the notch from the bed of channel
= depth of water in channel-height of water over V-notch
=13-493=0807m. Ans.



Flow Through Pipes

11L.1. INTRODUCTION

Inthe chapters 9 and 10, laminar flow and turbulent flow have been discussed. We have seen that when
the Reynold number is Jess than 2000 for pipe flow, the flow is known as laminar flow wiicreas When the
Reynold number is more than 4000, the flow s known as turbulent flow. In this chapter, the turbulent ﬂn}” ak
Muids through pipes running full will be considered. If the pipes are partially full as in the case of sewer lines,
the pressure inside the pipe is same and equal to atmospheric pressure. Then the flow of fluid in the pipe is not

-under pressure. This case will be taken in the chapter of flow of water through open channels. Here we will
£onsider flow of fluids through pipes under pressure only.

11.2. LOSS OF ENERGY IN PIPES

When a fluid is flowing theough a pipe, the fluid experiences some resistance due to which some of
the energy of fluid is lost. This loss of energy is classified as :

Energy Losses
| ]
1. Major Energy Losses 2. Minor Energy Losses
This is due to friction and it js This is due to
calculated by the following [:3} Sudden expansion of pipe
formulae ; (B) Sudden coftraction of pipe
(@) Dracy-Weisbach Formula (¢)Bend in pipe
E’!:I]L Chezy"s Formula (d) Pipe fittings exc.

@;"m obstruction in pipe,

11.3. LOSS OF ENERGY (OR HEAD) DUE TO FRICTION

Darcy-Weisbach equation which has been derived in chapter 10 and 151;1 l:r.: ndll;l: to friction is calculated from

b= 'd;f;gfl
where = loss of head due to friction =ALLY)
[= Co-efficient of friction which is a function of Reynold number
= ;—ﬁl‘m R, = 2000 (viscous Nlow)
g |

= nﬂ_,:;gg for R, varying from 4000 to 10°
4



L = length of pipe,
V = mean velocity of flow,
d = diameter of pipe.

(i) Chezy's Formula for loss of head due to friction in pipes. Refer o chapter 10 anticle 10.3.1 in
which expression for loss of head due 1o friction in pipes is derived. The equation (#ii) of article 10.3.1, is

M=%“£,¢Lﬂe ~(11.2)

where  fig= loss of head due 1o friction, P = wetted perimeter of pipe,
A = area of cross-section of pipe, L = Length of pipe,
and V= mean velocity of flow.

" Area of flow
Perimeter (wetted)

Hnwlh:enﬁaﬂf% [

) is called hydraulic mean depth or hydraulic radius and is
denoted by m.

I
o

Hydraulic mean depth, m= ‘% = e - i_
El.l'l:naa.ti'tu'tit'ngi =m or £ = 2 % in equation (11.2), we get
P A m :

ﬁf:%ﬂ,ﬂ.ﬁﬁﬂ* ar ﬁnﬁ;:%xmx%-%xmg%

PE PE
F:‘V’anx%s F'\/m%f -{11.3)
Let l;_g' = , where C is a constant known as Chezy's constant and %: i, where i is loss of head
per unit length of pipe.
oy pg by .
Substituting the values of T and’y/ 7" in equation (11.3), we get
V=Cml ~(11.4)

Equation (11.4) is known as Chezy's formula. Thus the loss of head due to friction in pipe from Chezy’s
formula can be obtained if the velocity of flow through pipe and also the value of C is known, The value of m
for pipe is always equal to did,

Problem 11.1. Find the head lost due to friction tn a pipe of diameter 300 mm

: and |
which water is flowing at a velocity of 3 m/s using (i) Darcy formula, ength 50 m, through

(1) Chezy's formula for which C = &0,

Take v for water = 0.0] stoke.

Sol. Given :

Dia. of pipe, d = 300 mm = 0.30 m
Length of pipe, L=50m

Velocity of flow, Ve=3mf

Chezy's constant, C =6

Kinematic viscosily, v =0.01 sioke = 0,01 emis

=0.01 = 107 * miyg,



(f) Darcy Formula is given by equation (11.1) as

X 4.f.L.1°
dx2g
Where ‘" = co-efficient of friction is a function of Reynold number, R,
- Ved 3.0x030
But-ﬂ,lﬁgl\'ﬁﬂh R.= = =9x :"-;.ﬁ
: v Dix10”
Value of J0079 019 ooss
4 R (9x 10977
2
Head lost, b= 4 00256 x 50 3 =, 7828 m. Ans.
0.3 x 2.0 x 9.81
(#) Chezy's Formula. Using equation (1 1.4)
V=Cvmi
where C = 60, m = ;inif—“qnmsm
3y
3=60VIITS s = = | x——=
60 xF or | (m]xmi 0.0333
But [= & = i
L 50

Equating the two values of i, we have % = .[333
* . .h.lf'-_- 5“‘ - .ﬂ33'3' = lqﬁﬁs m. AH.Er
Problem 11.2. Find the diameter of a

| Pipe of length 2000 m when the rage of flow of water thr h
the pipe is 200 litres/s and the head lost due to friction is 4 m, Take the value af C = ,5;1” in r:.'.F{.gz}r 5 ;ﬂ:m:;‘fg

Sol. Given :

Length of pipe, L=2000m

Discharge, @ =200 litre/s = 0.2 m¥/s

Head lost due to friction, hy=dm

Value of Chezy's constant, C=50

Let the diameter of pipe =

"u'ehniljrqfﬂnw. F:n—li;lgtfﬁ:%:&zxd
4 4

Hydraulic mean depth, m=

d
]
Loss of head per unit lengih, i=%=—q—=.ﬂﬂl

Chezy’s formula is given by equation (11.4) 08 V= C vy
Substituting the values of V, m, i and C, we get

.2 =4 el d
E'S'UV‘—H.U'DE or "I“"— 0.2 x4
_qu!_ 4 ke D02 = —=%9 _ 0509
_?——.

nd? ¢ 5p



Squaring both sides,

Problem 11.3. A crude oil of kinematic

d 003509° 0000259 4 x 0000259
4 b .{II"I = ﬂ‘ - d-' or .-_f! = rmz

d = V00518 = (0518)" = 0.553 m = 553 mm. Ans.
viscosity 0.4 stoke is flowing through a pipe of diameter 300 mm

= 0.0518

at the rate of 300 litres per sec. Find the head lost due to friction for a length of 50 m of the pipe.

Sol. Given :
Kinematic viscosity,
Dia. of pipe,
Discharge,

Length of pipe,

Velocity of flow,

Reynold number,

v = 0.4 stoke = 0.4 cm?/s = .4 x 107 * m%s
d=300mm=030m
0 = 300 lires’s =03 m'/s

As R, lies between 4000 and 100,000, the value of fis given by

Head lost due 1o {nction,

L=50m
'.-"':—E—= 03 =424 m/s

N Z

7 0.

Vxd 424x030 i
= = =3.18% 10
Re= 5 0.4x10™ )
/ 079 079 - Bise1

R Basx w0

¥ ¢ |
4-f.f_.'|r"'=dt.m5‘ﬂxﬁﬂi4-24 S e Ams
dx2g 03 x2 =981

Ilrn

' 5 Ty ] diameter 300 mm at the raie of
Problem 11.4. An oil of sp. gr. 0.7 is flowing Hl.rmgh a pipe of
500 litresfs. Find the head lost dwmﬁ&t&unmdwwwdmmmmﬂrﬂmfwﬂmﬂlqimﬂm Take

v = .29 stokes.
Sol. Given :
Sp. gr. of oil,
Dia. of pipe,
Discharge,
Length of pipe,

Velocity,

2 Reynold number,
Co-efficient of friction,

= Head lost due to friction,

Power required

5=07
d=300 mm=03m
O = 500 litres/s = 0.5 m"/s
L = 1000 m
Vutt o B3 0328 aoran
Area Ed: nx03
3
Vxd 7073203
=Ty 029x 107
79 0.79 L
[= A" a0y

_dxfxLxV _ 4x 0048 x 1000 x 7.073

=7.316 % (10)*

where p = density of oil = 0.7 x 1000 =700 kgg/m’

Power required

hy= dx2g 0.3x2x9.81 =180
_peOhy o
1000 :
B T00 = 9.81 = 0.5 = 163.1R - 560.28 KW, Ans.

1000-



rroblem 11.5. Calculate the discharge through a pipe of diameter 200 mm when !'r:e differ e af
Pressure head between the two ends of a pipe 500 m apart is 4 m of water. Take the value of ‘" = 0.009 in the
formula hy= E—I—L—E ]

d x 2g
Sol. Given :

Dia. of pipe, d = 200 mm = 0.20 m

Length of pipe, L =500m

Difference of pressure head, hy= 4 m of water

f=.009
Using :q‘uaﬁﬂﬂ{]l,l}. we have hy= %ﬁ
E

or* 4 x 009 x 500 x V2 _40x02x2x981
D axzaoml % V= dnx 000500 =087

V=v0.87Z = 0.9338 = 0.934 m/s

Discharge, { = velocity x area
-2 n n 2
=0.934x = d' = 0.934 x 702
=0.0293 m’fs = 293 litres/s, Ans.
Problem 11.6.

Water is flowing through a pipe of diameter 200 mm with a velocity of 3 mfs. Find the
head lost due 1o friction for a length of 5 m if the co-efficiens of friction is given by f=.002+ &9

. RO where R,
15 Reynold number. The kinemaric viscosity of water = .01 sioke,
Sol. Given :

Dia. of pipe, d =200 mm = 0.20 m
Velocity, V=3ms
Length, L=5m
Kinematic Viscosity, v =0.01 stoke = .01 x 1074
Vxd 3x020
Reynold number, R.= =" -
4 v A1 % 10 6x 107
0.9 09
Value of f=02+—s=024 = 0.9
Re (6x 1073 = 02+ 5=
= 02 + 0166 = 0.02166
Head lost ducto friction, = 2XLXLX V' 4.0 x 02166 5.0 32

dx2g 0.20%x20%08; —
= 00.993 m of water, Ans,
Problem 11.7.An oil of sp. gr. 0.9 and viscosity 0.06 poise iy % )
200 mm at the rate of 60 litres/s. Find the head lost due to friction for q 5ﬂgm r;ﬂglhm":;ﬁ'_l 4 pipe of diameter
required to maintain this fTow. Pipe. Find the power
Sol. Given :

Sp. gr. of oil =0.9
: - = 0,06 poise = 208 Ns/m?
Viscosity, a po 10



Dia. of pipe, '

d=200mm=02m

Discharge, @ = 60 litres/s = 0.06 m’/s

Length, L =500 m

Density, p = 0.9 x 1000 = 900 kg/m’

- Reynold number, R = gre =900 5 L2102

| 0.06
10
__Q _006_ 006 _
where V= - g zz-xﬂngm:l.mm
it 3
Re= 900 x 1E1X02X 10 _ g7
As R, lies between 4000 and 10°, the value of co-efficient of friction, fis given by

0.079 0.079
= = = 0051
f RO® " (57300)°5

2
2. Head lost due 1o friction, J;;= - xﬂ’:;‘; vV = 4% %ﬂgl ::350;1;11.91
ke A =
=948 m of water. Ans.

= . Power required = Efﬁf: X EI,Ell';]ﬂu,ﬂﬁ Sl A 502 kW. Ans

11.4. MINOR ENERGY (HEAD) LOSSES

The loss of head or energy due to friction in a pipe is known as major loss while the loss of encrzy due
to change of velocity of the following fluid in magnitude or direction is called minor loss of energy, The minor
loss of energy (or head) includes the following cases :

J.hoss of bead due to sudden enlargement,
2. Loss of head due (o sudden contraction,
3, Loss of head at the entrance (o a pipe,
4. Loss of head at the exit of a pipe,
5. Loss of head due to an obstruction in & pipe,
6. Loss of head due to bend in the pipe,
7. Loss of head in various pipe fittings.

In case of long pipe the above losses are small as compared with the loss of head dye to friction and
hence they are called minor losses and even may be neglected without serious error. But

i incaseofas i
these losses are comparable with the loss of head due to friction, hort pipe,
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Problem 11.16. Determine the rate of flow of water throu ; :
i gh a pipe o
when one end of the pipe is connected to a tank and other end o e of diameter 20 and length 50 m

: f the pipe is
is horizontal and the height of water in the tank is 4 m above th ﬂPEf: to th

4. 5L
dx2g

and take f = .009 in the formula hy =



Sol. Dia. of pipe,

Length of pipe, " L=50m
Height of water, H=4m
Co-efficient of friction, f=.009
Let the velocity of water in pipe = Vm/s.

d=20em=020m

Applying Bemoulli’s equation at the top of the water surface in the tank and at the outlet of pipe, we
have [Taking point 1 on the top and point 2 at the outlet of pipe].

Ve pr Vil

centre of pipe

ar

2
Pyt el ¥ SE R
oz’ 2 Z = PE+ 2 + z; + all losses
Considering datum line passing through the
'|l|.r'1
D+E+4.D=H+E;;-+D+{h;+hﬂ }
Va: L= 50m G
40=—=4+Iy+ Iy d=20cm
2g
But the velocity in pipe = V, V=V Fig. 11.4
12

e 40= 2% + I+ By woli)

1.;2
From equation (11.8), /; = 0.5 % and h from equation (11.1) is given as

P Y

- i d x 2g

Substituting these values, we have
a0 E 0.5 12 JAx[.L. W
=g dx2g
" 4% 009x50]_ V2 V2
=% 1.0+05+ 0.2 ] 28 [1[}+l].5+9.ﬂ]-1ﬂ5:-:E

4x2dx985l]
V= v 105 = 2.734 m/sec

Rate of flow,

Q=AxV=7x(02)x 2734 =0.08589 m¥s = 85.89 litres/s. Ans.



11L.5. HYDRAULIC GRADIENT AND TOTAL ENERGY LINE
The concept of hydraulic gradient line and total energy line is very useful in the study of flow of fluids

through pipes. They are defined as :
11.5.1. Hydraulic Gradient Line. It is defined as the line which gives the sum of pressure head

% and datum head (z) of a flowing Muid in a pipe with respect to some reference line or it is the line which
is obtained by joining the top of all vertical ordinates, showing the pressure head (p/w) of a flowing fluid in a
pipe from the centre of the pipe. It is briefly written as H.G.L. (Hydraulic Gradient Line).

11.5.2. Total Energy Line. It is defined as the line which gives the sum of pressure head, datum head
and kinetic head of a flowing fluid in a pipe with respect to some reference line. It is also defined as the line
which is obtained by joining the tops of all vertical ordinates showing the sum of pressure head and kinetic
head from the centre of the pipe. It is briefly written as T.E.L. (Total Energy Line).

Problem 11.22. For the problem 11.16, draw the Hydraulic Gradient Line (H.G.L.) and Total Energy
Line (T.E.L.).

Sol. Given !
L=30m,d=20lmm=02m

H=4m, f=.009 :
Velocity, Vthrough pipe is calculated in problem 11,16 and its value is V = 2.734 m/s

Now lt; = Head lost at entrance of pipe

- S 2
<05 Y 3052734
2g 2 % 9.81

={. =0.19m




= hy= Head loss due to friction

2
xfxLxV? 4x0009x50x@7347 3 4rqm
= dx2g = 0.2 x2x9.81

() Total Energy Line (T.E.L.). Consider three points, 4, B and C on tl]*f: fﬂ;ﬂ surfac;:;f w“g’r.i“ the
tank, at the inlet of the pipe and at the outlet of the pipe respectively as shown in Fig. 11.8. Let us find tota]

energy at these points, taking the centre of pipe as reference line.

l.Tutalnncrg:,ratA=~E-+E+z.—.[|+{j+4,[}=4m

Pg 28
2. Total energy at B = Total energy atA — h; =4.0-0.19=3.81 m
V.2 V2 2.734
3. Total Y <SPS N O o W =0.38m
otal energy at C pg+23+z‘ ﬂ+2g+ﬂ 5 % 9.81

Hence total energy line will coincide with free surface of water in the tank. At the inlet of the pipe, it

will decrease by h;(=0.19m) from free surface and at outlet of pipe total energy is 0.38 m. Hence in the
Fig. 11.8,

(1) Point D represents total energy at A

(11) Point E, where DE = h;, represents total energy at inlet of the pipe
(iti) Point F, where CF = 0.38 represents total energy at outlet of pipe.
Join D to E and E to F. Then DEF represents the total energy line.

(b) Hydraulic Gradient Line (H.G.L.). H.G.L. gives the sum of (p/w + z) with reference to the datum-
2

line. Hence hydraulic gradient line is obtained by subtracting % from total energy line. At outlet of the pipe,

- :
total energy = % . By subtracting Z_g from total energy at this point, we shall get point C, which lies on the
centre line of pipe. From C, draw a line CG parallel to EF. Then CG represents the hydraulic gradient line.



Impact of Jets and Jet Propulsion

I7.LINTROMICTION
The liquid comes out in the form of a jet from the outlet of a nozzle, which is fitted to a pipe through
which the liquid is flowing under pressure. If some plate, which may be fixed or moving, is placed in the path

of the jet, a force is exented by the jet on the plate, This force is obtained from Newton's second law of motion
or from 1“1P“155'ﬂl'}ml:nlum equation. Thus impact of jet means the force exerted by the jet on a plate which

may be stationary or moving. In this chapter, the following cases of the impact of jet i.e., the force exerted by
the jet on a plate, will be considered :
(@) Force exerted by the jet on a stationary plate when

1. Plate is vertical to the jet, 2. Plate is inclined to the jet, and

3. Plate is curved.
(b) Force exerted by the jet on a moving plate, when

1. Plate is vertical to the jet, 2. Plate is inclined to the jet, and

3. Plate is curved.

¢ »XERTED BY THE JET ON A STATIONARY VERTICAL PLATF

Consider a jet of water coming out from the nozzle, strikes a flat vertical plate as shown in Fig. 17.1.
Let V = velocity of the jet,  d = diameter of the jet,

a = area of cross-section of the jet = -:— d".

F

JPIPE NOZZLE * i "

i

1,' [

- - - n :'."'__':::.__.;. ;
s PLATE

¥ !

JET OF WATER |




. T]]lf jﬂ. al_'tnr striking the plate, will move along the plate. But the plate is at right angles to mﬂj:‘: HEI,"'I
the jet after ﬂ:‘fklng will get deflected 1h rough 90°, Hence the component of the velocity of jet, in the direction
of jet, after striking will be zero,

The force exerted by the jet on the plate in the direction of jet,
F, = Rate of change of momentum in the direction of force
_ Initial momentum - Final momentum
Time
B (Mass x Initial velocity - Mass » Final veloeity)
Time

_ Mass
Time

= (Mass/sec) x (velocity of jet before striking — final velocity of jet alter striking)
mass/sec = p x aV)
w(17.1)

[ Initial velocity — Final velocity|

= paV]V-0] i
= paV®
For deriving above equation, we have taken initial velocity minus final velocity and not final velocity
minus initial velocity. If the force exerted on the jet is to be calculated then final minus initial velocity is ta I'EE!I'l.
But if the force exerted by the jet on the plate is to be calculated, then initial velocity minus final velocity is

taken.
Note. In equation { 17.1), if the value of density (p) is taken in 5.1 units {re. kg.n'mj'j, the force (F,) will be in Newlon

(N). The valve of p for water in 8.1. units is equal to 1000 kg/m.
17.2.1. Force Exerted by a Jet on Stationary Inclined Flat Plate. Let a jet of water, coming out from

the nozzle, strikes an inclined flat plate as shown in Fig. 17.2,

Let V = Velocity of jet in the direction of x,
B8 = Angle between the jet and plate,
a = Area of cross-section of the jet.

Then mass of water per sec striking the plate = p x aV.




: e

If the plate is smooth and i it is assumed that there is no Iuss of energy d,“‘ o impact of the jer, they

jet will move over the plate nfier striking with a velocity equal to initial velocity Le., with a velocity V. Ley y
find the force exered by the jet on the plate in the direction normal to the plate. Let this foree js representeq

F.,
P F, = mass of jet striking per sevond

* | Initial velocity of jet before striking in the direction of 5
~ Find velocity of jet after striking in the direction of n]
= paV[V sin 0 = 0] = paV® sin 0 w(17.2)

This force can be resolved into two components, one in the direction of the jet and other perpendicular
to the direction of ow, Then we have,

Fy = component of F, in the direction of flow
=F_ﬂua{§ﬂ‘—ﬂ}=F,5inﬂnmﬁainﬂxsinﬂ v F,=Pﬂ1’g!inﬁj

= pAV 5in® 0 (17.3)
And, F, = component of F,, perpendicular to fow
= Fy sin (90°-0) = F, c05 0 = pAV? sin 8 cos 6. «(17.4)

17.2.2. Force exerted by a Jet on stationary curved plate

(A) Jet Strikes the curved plate at the centre, Let g jet of water strikes a fixed curved plate at the
centre as shown in Fig. 17.3, The jet after striking the plate, comes out with the same velocity if the plate is
smooth and there is no loss of energy due to impact of the jet, in the tangential dircction of the curved plate,
The velocity at outlet of the plate can be resolved into two components, one in the direction of jet and other
perpendicular to the direction of the jet,

Component of velocity in the direction of jet=—-Vcos 8.

Fig. 17.3. Jet siriking a fixed curved plate at centre
(= ve sign is taken as the velocity at outlet is in the o
from nozzle).
Component of velocity perpendicular to the jet=Vsing
Force exerted by the jet in the direction of jet,
F, = Mass per sec x [Vic— Vael
where WV, = Initial velocity in the direction of jet=V

" Vi, = Final velocity in the direction of jet=—Veos

Pposite direction of the jet of water coming out



Fy = paV]V=(-V cos 8)] = paV]V + V cos 8] (17.5)
= paV* [1 + cos 0] e
Similarly, Fy = Mass per sec x [Vy, = Vi, ]
where ¥y, = Initial velocity in the direction of y=0
V= Final velocity in the direction of y = V sin 8

3 FJI' — Fﬂ“u - Vsin H] =— Fﬂ];ﬂ sin B . 1..{]'?.&]
~ve sign means the force is acting in the downward direction. In this case the angle of deflection of the jet
= (180" - ) [17.6 (a)]

(B) Jet strikes the curved plate at one end
tangentially when the plate is Symmetrical, Let the
jetstrikes the curved fixed plate at one end tangentiad-
ly as shown in Fig. 17.4. Let the curved plate is
symmetrical about x-axis. Then the angle made by the
tangents al the two ends of the plate will be same.

Let V= Velocity of jet of water

0 = Angle made by jet with x-axis at
inlet tip of the curved plate.

If the plate is smooth and loss of energy due
to impact is zero, then the velocity of water at the

outlet tip of the curved plate will be equal to V. The
forces exerted by the jet of water in the directions of

x and y are
F, = (mass/sec) x [Vie—Vadl
= paV]Vcos @ — (- V cos 8)]
= paV]Vcos 8 + Veos ]
= 2paV? cos @ (177

F_'l'; pﬂﬂ vu - .ll';-zl!,.]
= paV]V sin 6 -V sin a)=0.
: ially when the P'Il! isu mmetrical. Wh
et strikes the curved plate at nTIE end tangent nsy 2
the cunl:c‘:d};lanllntf. is uns:.rmm-:lricnl about x-axis, then the angles made by the tangents drawn at the inlet and

i Iate with x-axis will be different.
outlet uE:taftl!e P g = angle made by tangent at inlet tip with x-axis,

¢ = angle made by tangent at outlet tip with x-axis.

f the velocity at inlet are

Vie= Vcos B and FIJ-'= Vsind
the velocity at outlet are

Vo, =— Veos g and Vo, = Vsing

xerted by the jet of water in the directions of x and yare
The forces € FF,-P““"h—"hl“a‘”"l“'mh{—vwm
= paV'[V'cos 0+ V' cos 6] = paV¥ [cos © + cos ¢) (17.8)

Fig. 17.4. Jet striking curved fixed plate at one end.

The two components o

The two componenis of



F, = paV [V, = Va,] = paV [V sin 0 - V sin ¢]

= paV* [sin 8 - sin §]. «(17.9)
Problem 17.1. Find the force exerted by a jet of water of diameter 75 mm on a stationary [lat plate,
when the jet strikes the plate normally with a velocity of 20 m/s.

Sol. Given !

Diameter of jet, d =75 mm = 0,075 m

o Area, =§di=:(m5f=.m441? m?

Velocity of jet, V=20mf.

The force excried by the jet of water on a stationary vertical plate is given by equation (17.1) as

F = paV® whese p = 1000 I|:||g'.."||'|3
F=1000 % 004417 x 20 N = 1766.8 N. Ans.

Problem 17.2. Water ix flowing through a pipe at the end of which a nozzle is fitted, The diameter of
the nozzle is 100 mm and the head of water at the centre of nozzle is 100 m. Find the force exerted by the jet
of water on a fived vertical plate, The co-efficient of velocity is given as .95.

Sol. Given :

Diameter of nozzle, d=100mms=l.lm
Head of water, H =100 m

Co-efficient of velocity, C, = 0.95

Area of nozzle, a= -E{.i}“ = 007854 m?

Theoretical velocity of jet of water is given as
Vin = vV2gH = vVZx 081 = 100 = 44.294 m/s
_ __Actual veloeity
But G Theoretical velocity
Actual velocity of jet of water, V= Cyx Vi = 0.95 % 44,294 = 42,08 m/'s.
Foree on a fixed vertical plate is given by equation (17.1) as

F = paV® = 1000 x 007854 x 42.08° (~* In 5.1 units p for water = 1000 kg/m™)
= 1372 N=139kN. Ans.
Problem 17.3. A jer of water of diameter 75 mm maoving with a velocity of 25 mjs sirikes a fixed plate

in such a way thar the angle between the jet and plate is 60°. Find the foree exerted by the jet on the plate (i) in the
direction normal to the plate and (ii) in the direction of the jet.

Sol. Given :

Diameter of jet, d =75 mm=0.075m

PRy T g L—‘d?=§{.n?5f=uﬂu441? m’
Velocity of jet, V=25 m/s.

Angle between jet and plate, 0 = 60°

(#) The force exered by the je

of water in the direction normal 1o the plate is given by equation {17.2)
as

Fy = paV® sin B
= 1000 x 004417 x 25 x sin 60° = 23907 N. Ans.



{ﬁj T]]E- fn“:t in t-h-: d!i].'l.'.'l.’.':'ticl-n ﬂtl l-ht j:t iﬁ Ei".":l‘l. h}' E-qu ﬂuﬂ“ {1-?-3}1
F,= paV?® sin® 0
= 1000 x 004417 = 257 x sin® 60 = 2070.4 N. Ans.

Problem 174. A jet of water of diameter 50 mm strikes a fixed plate in such a way that Ifq'El ﬂnﬁ!e
between the plate and the jet is 30°. The force exerted in the direction of the jet is 1471.5 N. Determiné fg
rate of flow of water.

Sol. Given :

Diameter of jer, d =50 mm=0.05 m
Area, a =7 (05 = 001963 m?

Angle,

8 =30"
Force in the direction of jet, F, = 14715 N

Force in the direction of jet is given by equation (17.3) as F, = pal® sin® 0
As the force is given in Newton, the value of p should be tiken equal to 1000 kg/m',

1471.5 = 1000 = 001963 = ¥ x sin® 30 = .05 V*

150
e 30000
V=547 mfs

Discharge, & = Area = Velocily
= 01963 x 54.77 = 0.1075 m'/s = 107.5 litres/s. Ans.

Problem 17.5. A jet of water of diameter 50 mm moving with a velocity of 40 m/s, strikes a curved
fixed symmetrical plate at the centre. Find the force exerted by the jet of water in the direction of the jet, if the
jet is deflected through an angle of 120° at the outlet of the curved plate,

Sul. Given :

Diameter of the jet, d =50 mm = 0.05m
Area, 1= E (05)* = 0.001963 m*

Velocity of jet, V=40 m/s

Anizle of deflection = 1307

From equation [17.6 (a)], the angle of deflection = 180° -0
180° -0 =120 or 0= 180°-120°=60°
Force exerfed by the jet on the curved plate in the direction of
the jet is given by equation (17.3) as
F,=paV? |1 +vos 0] Bioons
= 1000 x 001963 % 407 % [1 + cos 60°] = 471115 N, Ans.
Problem 17.6. A jet of water of diameter 75 mm moving with a ve

locity of 30 my %, strikes rved
X = 4 . i y i Ci
fived plate tangentially af one end ai an angle of jﬂ'_' fo the Frr:l.r:zrm.mj_ The jet leaves the plate at an angle of
20° 1o the horizontal. Find the force exeried by the jet on the plate in

the horizontal and vertical direction.
Sol. Given :

Diameter of the jet, o =75 mm =0.075 m

Arei, ft = %{.HTS‘F = 004417 w?



Velocity of jet, V =30 m/s

Angle made by the jet at inlet tip with horizontal, 6 = 30°

Angle made by the jet at outlet tip with horizontal, ¢ = 20°

The force exerted by the jet of water in the direction of x is given by equation (17.8) and in the directiop
of y by equation (17.9),
; F,=pa1ﬂ[cnsﬂ+ms¢]

= 1000 x .004417 [cos 30 + cos 2Q] x 30°=7178.2 N. Ans.
and F,= paV? [sin 6 — sin ¢]
= 1000 x .004417 [sin 30 —sin 20] x 30° = 628.13 N. Ans.



Angle of swing, or angle made by deflected plate with the vertical, 8 = 30°

Dhaﬂf‘hﬂjﬁ-‘i d—-'lsmﬂ'l.:ﬂ.ﬂ'ﬂm
Area of je g K
jet, a= 3 d =20025) m?

Velocity of jet, V=6ms

Let W = Weight of plate

Using equation (17.10), we get  sin @ = pxax¥®

W
1000 x [%xﬂ.ﬂﬁz) x 67
i w_p-x.ﬂ'x'p'a_ 535_33:”_ Mh
Y sin 30°

174. FORCE EXERTED BY A JET ON MOVING PLATES
The following cases of the moving plates will be considered :
1. Flat vertical plate moving in the direction of the jet and away from the jet,
2. Inclined plate moving in the dircction of the jet, and
3, Curved plate moving in the direction of the jet or in the horizontal direction.
17.4.1. Force on Flat vertical plate moving in the direction of Jet. Fig. 17.10 shows a jet of water
striking a flat vertical plute moving with a uniform velocity away from the jet.
Let V = Velocity of the jet (absolute),
a = Area of cross-section of the jet,
u = Velocity of the flat plate. |
In this case, the jet does not strike the plate w.ith " I
a velocity V, but it strikes with a r:!al'mz veloeity, which " | :
is equal to the absoluie velocity of jet of water minus the y ‘. ]
velocity of the plate. o EE =
Hence relative velocity of the jet with respect to i .
plate :
= (V—u) '
Mass of water striking (5. plate persec i
= p » Arca of jet x Velocity with which

jet strikes the plate (V-u)
Fig- 17.10. Jet striking a flat vertical moving plate.
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Foree exerted by the jet on the moving plate in the direction of the jet,

F,=Mass of water striking per sec
* [Initial velocity with which water strikes — Final velocity]

= pa(V—u) [(V-u)-0] (' Final velocity in the direction of jet is zero)
= pa(V —u)’ (17.11)
I this case, the work will be done by the jet on the plate, as plate is moving, For the stationary plates,
the work done is ZEro.
iy = 1000 kg, hen weight W will b in Netwe,




Work done per second by the jet on the plate
Distance in the direction of force
Time
=F.xu=pa(V-u) xu ” -(17.12)
In equation (17.12), if the value of p for water is taken in S.1. units (i.e. 1000 kg/m"), the work done

r ¥

= Force =

will be in N m/s. The term H;“ 15 equal to W (watt).

17:4.2. Force on the Inclined Plate moving in the direction of the Jet. Let a jet of water strikes an
inclined plate, which is moving with a uniform velocity in the direction of the jet as shown in Fig. 17.11.

Let V= Absolute velocity of jet of water (V-u)
u = Velocity of the plate in the direction of jet s & '&ﬂ-j /
i'r r

@ = Cross-sectional arca of jet 0 p,
B = Angle between jet and plate ._.—-—-'=}"L ’,"r 4 .rI ¢
. : . " &
Relative velocity of jet of water = (V - u) vV, == i T

The velocity with which jet strikes = (V - u)
Mass of water striking per second
=pxax(V-u)
If the plate is smooth and less of energy due to

impact of the jet is assumed zero, the jet of water will leave _ L :
the inclined plate with a velocity equal to (V - u). Fig. 17.11. Jet siriking and inclined moving plate.

The force exerted by the jet of water on the plate in the direction normal 1o the plate is given as
Fy = Mass striking per second « [Initial velocity in the normal direction with
which jet strikes — Final velocity|
= pa (VAa¥%[(V —u) sin 8 — 0] = pa (V —u)* sin 8 .(17.13)
This normal force F, is resolved into two component namely F, and F,, in the direction of the jet and
perpendicular to the direction of the jet respectively,

E,=F,sin 8 = pa (V- u)* sin’ 0 -(17.14)
m&: pa (V —u)* sin 8 cos 0 (17.15)
. Work done per second by the jet on the plate —
= F, » Distance per second in the direction of x
=Foxu=pa(V-u)sin 8 x u = pa (V-u u sin? g N ms.  ..(17.16)

Problem 17.11. A jer of water of diameter 10 cm strikes a flat plate normally wigh P
The plate is moving with a velocity of 6 m|s in the direction b with a velacity of 15 m|.

of the jet and away from the jer, Find -
() the force exerted by the jet on the plae,
(11) work done by the jet on the plate per second.

Sol. Given :
Diameter of the jet, d=10em=0,1m
x 3
Area, ﬂtzﬂl=if.!}1=_!'ﬂ]?ﬁ54 m*
Velocity of jet, V=15ms

Velocity of the plate, i = 6m/s.



(1) The force exerted by the jet on a toving fiat vertical plate is given by equation (17.11),
Fy=pa(Vv - u)*
= 1000 x 007

) B54 % (15-6° N =636.17N. Ans.
(i6) Work done per second by the jey (15 -6)

=F. % u=63617x 6 =3817.02 Nm/s. Ans.

Problem 1_1'.11. For the problem 17.11, find the power and efficiency of the jet.
Sol. The given data from problem 17.11 is

a= 007854 m*, V=15m/s, u=6m/s
Also work done per second by the jet = 3817.02 Nm/s

() Power of the jet in kKW _ Waork done per second S 3BITOZ _ 4 17 kW, Ans.
LiMK] 1000
(if) Efficiency of the jet () = Cutput of the jet per second A1)
Input of the jet per second
where outpul of jet/sec = Work done by jet per second = 3817.02 Nm/s
And input per second = Kinetic energy of the jetfsec
1 : 1 1
= 3 x 1000 x 007854 x 15" Njs = 13253.6 Nms

_3817.02
T 132536

Problem 17.13. A 7.5 cm diameter jet having a velocity of 30 mfs strikes a flat plate, the normal of
which is inclined at 45° to the axis of the jet. Find the normal pressure on the plate : (i) when the plate is
stationary, and (if) when the plate is moving with a velocity of 15 m/s and away from the jei. Also determine

1} of the jet = (1.288 = 28.8%. Ans.

the power and the efficiency of the jet when the plate is moving. (AMIE, Winter 1981)
Sol. Given:
Diameter of the jet, d=75em=0075m
... 2_ 2
Area, a= A (075)° = 004417 m

Angle between the jet und plate B =90 -45" = 45°
Velocity of jet, V=30 mis. o .
(i) When the plate is stationary, the normal force on the plate is given by equation (17.2) as
F,= paV? sin 0 = 1000 x 004417 x 307 x sin 45 = 281096 N. Ans.
(i) When the plate is moving with a velocity 15 m/s and away from the jet, the normal " N
15 wiven uqu:tinn [I?-Ij] as )
plate is given by Fo=pa(V= H'}l sin B where u = 15 m/s,
= 1000 » 004417 x (30 - 15 x 5in 45° = 70274 N, Ans,
(iif) The power and efficiency of the jet when plate is moving is obtained as

Waork done per second by the jet
= Force in the direction of jet

x Distance moved by the plate in the direction of jet/sec
=F. xu wh:p;F_.‘=Fﬂ5inH=TBI.74H£.in45=4qﬁ.‘;H



Work done/sec = 496.9 x 15 = 7453.5 Nm/s

= Wark done per second _ 7453.5
1000 ~ 1000

_ Output ~ Work done per second

"~ Input ~ Kinetic encrgy of the jet

__ 74535 74535 _ 74535

%{pﬂl"}x ¥ % pal? %x 1000 x .004417 x 30°

=0.1249=0.125=12.5%. Ans.

17.4.3. Force on the Curved Plate when the Plate is Moving in the Direction of Jet. Let a jet of
water strikes a curved plate at the centre of the plate which is moving with a uniform velocity in the direction
of the jet as shown in Fig. 17.12.

Power in kKW =7.453 kW. Ans.

Efficiency of the jet

 Let V = Absolute velocity of jet, 'r:i""'“ (Y=} S
a = Arca of jet,
u = Velocity of the plate in the direction of A
_the jet. (V-ulCos® RN
Relative velocity of the jet of water or the velocity 1\
with which jet strikes the curved plate = (V — ). v ] l '
If plate is smooth and the loss of energy due to impact i M :
of jet is zero, then the velocity with which the jet will be i ,'
4 JET OF WATE !
leaving the curved vane = (V - u). Japd
This velocity can be resolved into two components, . J"'
one in the direction of the jet and other PLI"II:T‘I.I;!IEHIEI 1o the

direction of the jet. — MOVING CURVED
Component of the velocity in the direction of jet PLATE
=—{(V-u)cos B Fig. 17.12. Jet siriking a curved moving plate.

(= ve sign is taken as at the outlet, the component is in the opposite direction of the jet).
Component of the velocity in the direction perpendicular to the direction of the jet= (V —u) sin 0.
Mass of the water striking the plate = p = a x Velocity with which jet strikes the plate
= pa(V —u)
Force exerted by the jet of water on the curved plate in the direction of the jet,
F, = Mass striking per sec » [Initial velocity with which jet strikes the plate in
— — the direction of jet — Final velocity]

= pa(V ~u[(V —u) = (- (V- u) cos 8)]

= pa (V—u)[(V-u) + (V—u) cos 0]

= pa(V - u)* [1 + cos ) (1717
Work done by the jet on the plate per second

= F, x Distance travelled Per second in the direction of x
=Fyxu=pa(V- w)* 1 + cos 8] x u
=pa(V-uf x u [1 + cos o) (17.18)
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Problem 1714, 4 je ”f: water of diameter 7.5 cm strikes a curved plate at its centre with a velocity of
20mis. The curved plate is moving with a velocity of8 ms in the direction of the jet. The jet is deflected through
an angle of 165°, Assuming the plate smooth find :

(i) Force exerted on the plate in the direction of jei, (i) Power of the jet, and

(iii) Efficiency of the jer.
Sol. Given :
Diameter of the jet, d=75em=0075m
Atea, a= % (075)% = 0004417
Velocity of the jet, V=20m/s
Velocity of the plate, u=8m/s

Angle of deflection of the jet = 165°

Angle made by the relative velocity at the outlet of the plate,
0=180°-165°=15°,
(1) Force exerted by the jet on the plate in the direction of the jet is given by equation (17.17) as
F,. = pa(V-u)*(1 + cos 8)
= 1000 x .004417 x (20 — 8)* [1 + cos 15] =1250.38 N. Ans.
(if) Work done by the jet on the plate per second

=F,.xu=125038 x 8= 10003.04 N m/s
’ _10003.04 _
Power of the jet =000 - 10 kW. Ans.
) . ; _ Output _ Work done by jet/sec
(iti) Efficiency of the jet ~ Input ~ Kinetic energy of jet/sec
125038 x 8 _ 125038 x 8

%(pu]}]xlﬂ %xlﬂmx.ﬂﬂﬂi’?nlﬁ

125038 x 8
e = =0.564 = 56.4%. Ans.

%x 1000 x 004417 x 20°

=




17.4.4. Force exerted by a Jet of Water on an Un-Symmetrical moving Curved Plate when Jet
strikes tangentially at one of the tips. Fig. 17.15 shows a jet of water striking a moving curved plate (also
called vane) tangentially, at one of its tips. As the jet strikes tangentially, the loss of energy due to impact of
the jet will be zero. In this case as plate is moving, the velocity with which jet of water strikes is equal to the
relative velocity of the jet with respect to the plate. Also as the plate is moving in different direction of the jet,

the relative velocity at inlet will be equal to the vector difference of the velocity of jet and velocity of the plate
at inlet.



Fig. 17.15. let striking a lnoving curved vane at one of the Lips.
Let ¥y = Velocity of the jet atinlet.
uy = Velocity of the plate (vane) as inlet,
'i-"',.1 = Relative velocity of jet and plate at inlet.
o = Angle between the direction of the jet and direction of motion of the plate, also called
guide blade angle.
0 = Angle made by the relative velocity {V,‘} with the direction of motion at inlet also called
vane angle at infet. -

1,r'h,l and 1-'}-! = The components of the velocity of the jet Vy, in the direction of motion and perpendicular
to the direction of motion of the vane respectively.

Vi, = It is also known as velocity of whirl at inlet.
],.-:I,.I = It is also known as velocity of flow at inlet.
V3 = Velocity of the jet, leaving the vane or velocity of jet at outlet of the vane.

u; = Velocity of the vane at outlet.
V., = Relative velocity of the jet with respect to the vane at outler

B = Angle made by the velocity ¥ with the direction of motion of the vane at outlet,

$ = Angle made by the relative velocity 1-"',1. with the direction of motion of the vane at outlet
and also called vane angle at outlet,

Vi, and ¥y = Components of the velocity V5, in the direction of motion of vane and perpendicular to
L == the direction of motion of vane at outlet,

Vi =1t is also called the velocity of whirl at outlet,
Vi, = Velocity of Mow al outlet,

The triangles ABD and EGH are called the velocity triangles at inlet and outler, These velocity triangles
are drawn as given below :



S

1. Velocity Triangle at Inlet. Take any point A and draw a line AB = Vi l'fl magnitude and direction
which means line AB makes an angle o with the horizontal line AD. Next draw a line AC = u; in magnitude,
Join C to B. Then CB represents the relative velocity of the jet at inlet. If the loss of energy at inlet due 1o
impact is zero, then CB must be in the tangential direction to the vane at inlet. From B draw a vertical line BD
in the downward direction to meet the horizontal line AC produced at .

Then BD = Represents the velocity of flow at inlet = Vg,
AD = Represents the velocity of whirl at inlet =V,
£ BCD = Vane angle at inlet = 8.

2. Velocity Triangle at Outlet. If the vane surface is assumed to be very smooth, the loss of erergy
due 1o friction will be zero. The water will be gliding over the surface of the vane with a relative velocity equal
to V,, and will come out of the vane with a relative velocity V, . This means that the relative velocity at outlet

V,, = F"r' And also the relative velocity at outlet should be in tangential direction to the vane at outlet,

Draw EG in the tangential direction of the vane at outlet and cut EG = V.. From G, draw a line GF in

the direction of vane at outlet and equal 1o u, the veloc -y of the vane at outler. Join EF, Then EF represents
the absolute velocity of the jet at outlet in magnitude a+ < dircction. From E draw a vertical lae EH to meet

the line GF produced at 4. Then
EH = Velocity of Mow at outlet = Vg
FH = Velocity of whirl at outlet = V,,,
§ = Angle of vane ol oatlet
B = Angle made by Vs with the direction of motion of vane at outlel,
If the vane is smooth and is having velocity in the direction of motion al inlet and outlet equal then we
have
1y =ity = 1 = Velocity of vane in the direction of motion and
Ve, =V, .
Now mass of water striking vane per sec = ;:m!l'i-"",,.L D)
where @ = Arca of jet of water, V, = Relative velocity at inlet.

Force exented by the jet in the direction of motion,
F, = Mass of water striking per sec x |Initial velocity with which jet strikes in the

direetion of motion = Final velocity of jet in the direction of motion] ...(if)
But initial velocity with which jet strikes the vane = V.
The component of this velocity in the direction of motion

=V, cos 8= (V, —u) (See Fig. 17.15)
Similarly, the component of the relative velocity at outlet in the direction of motion = = Vi cos ¢

=—[uz+ V|
= Ve Sign is taken as the component of V., in the direction of motion is in the opposite direction.
Substitting the cquation (i) and a1l above values of the velocities in equation (if), we get

Fe=paV, [(Vi, =) = {= (2 + V. )} = paVy, [V, —t + iz + Vsl

=paVy [V, + Vi) (- =) o)



The equation (fi1) is true only when ap
Vi @ 0, then equation (1) becomes as,
F,= nu\.*',lwwl]
IT i is an obtuse angle, the expression for F, will become
F,.= paVy [V, - Vi
Thus in general, F, is written a5 Fy= paV V., tV.]
R W3

Work done per second on the vane by the jet

= Force x Distance per second in the direction of force

=F %= pﬂ‘lr"',l ['I.-"MrI + l-"w:| * i

Work done Per second per unit wuigh[ of Nuid sir king per second
pavey [V, s Vil ki Nmss  paVy, [V, 2 Vil xu

=Wuiglh[ of Muid striking/s N/s -

é [Vie, = Viey] 2 12 Nm/N
Work done/sec per unit mass of Muid striking per second

paVy [V, s Vi lxu Ny paVy [V, 2V ] xu

gx paVy

* Mass of fluid striking/s kgss -
= (Vi = Vioo) » 0 Novkg

Pﬂvrl

Nm/kg
~[17.21 (a)]

gle b shown in Fig. 17.15 is an acute angle. 1f f = 90° the

.(17.19)

.(17.20)

Nm/N

(17.21)

Note. The equation { 17.21) gives the work done per unit weight whereas the equation [17.21 {a)] gives the work

done per unil mass,

Problem 17.18. A jer of water having a velocity of 20 mis strikex a curved vane, which is maving with
a velocity of 10 m/s. The jet makes an angle of 20° with the direction of motion of vane at inlet and leaves at

an angle of 1307 to the direction of motion of vane an oniler. Calculate :
(i) Vane angles, so that the water enters and leaves the vane

without shock.
(if) Wark done per second per unit weight of water striking (or
work done per unit weight of water striking) the wine per secand.

Sol. Given :

Velocity of jet, Vi=20 m/s
Velocity ol viane, = 10 m/s
Angle made by jetal inlet, with direction of motion of vane,
a=20°
Angle made by the leaving jet, with the direction of motion
= 130°
= 180° - 130° = 50°
In this problem, wy =y = 10 myfs
vr,, = '-":,.: ;

(i) Vane Angles means angle made by the relative velocities
a1 inlet and outlet, Le. B and ¢.

L) —a

Vi, ——=]

Fig. 17.16




D
From Fig. 17.16, in AABD, we have tlnﬂng—ﬂ
AD -AC  V,, -u wee{)

where Vo=V, sina = 20 x sin 20 = 6.84 m/s

'ir’,.p1 =V,cos =20 x=cos 20 = 18,794 m/s.

uy = 10 m/s
= .._IS'L o
tan 0 = 18,794 - 10 J778 or 0=137875
0=37"525. Ans.
From, AABC 0=k o ¥, oo S84 __ .4
' Ve, " sin@  sin37.875 '
Vi,=V,, = 1L14 m/s.
From AEFG, applying sine rule, we have
F’: _ iy
sin (180° - B) ~ sin (B - ¢)
11.14 10 11.14 10
or = = o - o
sin fi 5in|ﬁ-1}im5in5U sin [50° - ¢ s )
sin (50° gy = JUXSI0 _ o6 cin 43.44¢

11.14 i
50° — ¢ = 43.44° or ¢ = 50° - 43.44° = 6.56°

p=6" 336 Ans.

(if) Work done per second per unit weight of the water striking the vane per second is given by equation
(17.21) as

1
= E [ Vi, + Viey] % 0 Nm/N (+ ve sign is taken as f is an acute angle)
where V,, = 18.79% m/fs, V,,, =GH-GF =V, cos ¢—uy = 11.14 x cos 6.56 — 10 = 1.067 m/s
U=y == 10 m/s

S Work done per unit weight of water

1
= gy [18.794 + 1.067] x 10 NayN = 20.24 NowN.  Ans.



; 1';"-‘-5. l-rur“ E“nt,ﬂ by a Jet of Water on a Series of Vanes. The force exerted by a jet of water
on a single moving ]}Iat-: (which may be flat or curved) is not practically feasible. This case is only a theoretical
one. In actual practice, a large number of plates are mounted on the circumference of a wheel at a fixed distance
apart s shown in Fig. 17.22. The jet strikes a plate and due to the force exerted by the jet on he plate, the
wheel starts moving and the 2pnd plate mounted on the wheel appears before the jet, which Ij‘Eaiﬂ exerts the
force on the 2nd plate. Thus each plate appears successively before the jet and the jet exerts force on each
p]nl:e. The wheel starts mnv'mg b constunt speed.

PLATES

WHEEL

&ZD; .

JET OF WATER

Fig. 17.22. Jet striking a series of vanes.
Let V = Velocity of jet,
d = Diameter of jel,
a = Cross-sectional area of jet,

T

= —

4
u = Velocity of vane,
In this cise the mass of water coming out from the nozzle per second is always in contact with the
plates, when all the plates are considered. Hence mass of water per second striking the series of plates = paV.
Also the jet strikes the plate with a velocity = (V - u),
Afler striking, the jet moves tangential to the plate and hence the velocity component in the direction

of motion of plate is equal to zero.
The force exeried by the jet in the direction of motion of plate,
F, = Mass per second [Initial velocity = Final veln city|
= paV](V —u) - }] = paV]V = u] (1722



‘Work done by the jet on the series of plates per second
= Force x Distance per second in the direction of force
=F . xu=paV]V-u|=u

Kinetic encrgy of the jet per second
——mﬁ--{pa?‘]xvﬂ pﬂl—‘a
: Work done per second p:ﬂf"[!r" ulxu _ 2u [V-
Efficie R s &
- "= Kinetic energy persecond 1 pﬂ!l"ﬂ GhE)

Condition for Maximum Efficiency. Equation (17.23) gives m-: value of the efficiency of the wheel.
For a given jet velocity V, the efficiency will be maximum when

Mg u _[HE.V_] [2#__,_*’ 2u J..;.
'Pri
or ——w‘;ﬂ“m or 2V-du=0 or 1"—%‘—1“ or u=EE. «(17.24)

Maximum Efficiency. Substituting the value of V' = 2u in equation (17.23), we get the maximum
efficiency as

2u (2 = u) Eu;u:u_I
Mz = 2y = uxlu-2° or 50%. -{17.25)

17.4.6. Force Exerted on a Series of Radial Curved Vanes. For a radial curved vane, the radius of
the vane at inlet and outlet is different and hence the tangential Velocities of the radial vane at inlet and outlet
will not be equal. Consider a series of radial curved vanes mounted on a wheel as shown in Fig. 17.23. The jet
of water strikes the vanes and the wheel starts rotating at a constant angular specd,
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Ry = Radius of wheel at inlet of the vane,
Ry = Radius of the wheel at the outlet of the vane,
@ = Angular speed of the wheel.
Uy =Ry and u;=wR;
The velocity triangles at inlet and outlet are drawn as shown in Fig. 17.23.
The mass of water striking per second for a series of vanes
= Mass of water coming out from nozzle per second
= paVy, where a = Area of jet and V; = Velocity of jet.
Momentum of water striking the vanes in the tangential direction per sec at inlet
= Mass of water per second x Component of V in the tangential direction

Then

= paVy x V,, (. Componentof V; in tangential dircction = V; cos & = Vi)
Similarly momentum of water at outlet per sec |

= paV, * component of V; in the tangential direction

=PdTr’;H{—‘-";ms|3}=—paLﬂwa] {'.' F1m5ﬂ= F"-:;'
—ve sign is taken as the velocity V3 at outlet is in opposite direction.

Now angular momentum per second at inlet

= Momentum at inlet x Radius at inlet

= paV; =V, = R
Angular momentum per second at outlet

= Momentum of outlet x Radius at outlet

=~FIEV|3V“.]HRQ
Torque exerted by the waler on the wheel,

T = Rate of change of angular momentum
= [Initial angular momentum per second
— Final angular momentum per second |

= paV; x Vy, x Ry = (= paVy x Vi, x Rg) = paV [V, x Ry + Vo, Ro
Work done per second on the wheel

= Torque = Angular velocity = Tx w

= paVy {‘.-"“.1:&1 +1-",.1R1] ww = paVy [1--"WI %Ry %o+ vw-;ﬂi"‘iﬂ]

= pﬂl"r] le Iy ¥ vw: = u'll {-'1 ul . Uﬂl H:ﬂ uﬂ = mﬂﬂ
If the angle B in Fig. 17:23 is an obtuse angle then work done per second will be given as
= paVy [Vie 1= Vi, 2], Y

The general expression for the work done per second on the whee]
= pr:l‘-"r] [F“.. bty x Vﬁ uﬂ

..(17.26)
If the discharge is radial at outlet, then f§ = 90° and work done becomes as

= pﬂl'r] [lnl"“_.l H],! {'_‘ F""‘]- =0) r{] Tm



EMiciency of the Radial Curved Vane
Work done per second __ PAVy [V, th Vi, 2]

Efficiency, "= Kinetic energy per second 7 (mass/sec) x 25
. paVy [V, u =Fu-=ua¥_2["w. “1”"1-&“?]‘ (17.28)
H{pavy) x V2 Vi’

Prohlem 17.24. If in problem 17.23, the jet of water instead of striking a single plate, strikes a series
of curved vanes, find for the data given in problem 17,23,
(i) Force exerted by the jet on the vane in the direction of motion

(ir) Power exerted on the vane, and

(itf) Efficiency of the vane.
Sol. Given:
From problem 17.23, V; = 15 m/s, W=y =y = 5 mfs,
a=0, a = 07854 m*
=457, Vi, =15m/s and V“,: = 2.07 m/s.

For the series of vanes, mass of water striking per second
= Mass of water coming out from nozzle
= paV; = 1000 = 007854 x 15 = 117.72
(7) Force exerted by the jet on the vane in the direction of motion
Fyo=paVy [V, + V] = 117.72[15 + 207] = 2009.5N. Ans,

(ir) Power of the vane in k'W

_ Work done per second  Fe % u 2009.5 x 5
- 1000 =000 kW = 1000 = 10,05 kW. Ans
Work done per second
(i) Efficiency, N=73 P 2
7 mass of water per sec) x V;
2009.5 = 5.0

i =0,7586 or T5.86%. Ans.
L1772 %150 * ?

Problem 17.25. A jet of water having a velocity of 35 m/s impinges on a series of vanes moving with
a velocity of 20 mfs. The jet makes an angle of 30° to the direction of motion of vanes when entering and leaves
at an angle of 120°. Draw the triangles of velocities at inlet and outlet and find ;

(a) the angles of vanes tips so that water enters and leaves without shock,
(B) the work done per unit weight of water entering the vanes, and

(<) the efficiency. (Fluid Power Engg., AMIE, Summer, 1984)
Sol. Given :

Velocity of jet, Vi=35mfs

Velocity of vane, w=ny=20ms

Angle of jet a1 .nler, a= 3)°

Angle made by the jet at outle with the direction of motion of vanes = 120°
Angle B= 180" - 120" = 60°



(a) Angles of vanes tips.
From inlet velocity tiangle

Outlet velocity
lI"II.,,lIII =~ V. COS% = 35 m&mu=aﬂ‘3| erE _“:_HU...._TIIEHE"
-"':I'L =V sin ot = 35 sin 30° = 17.50 m/s y J;E:-.Tﬂ‘nndnf

v Vane
tin 0 = 'ﬁ = 17.50 =] EW
Vi, =4y 3031-20
e Mation of
0=t 1.697 =60°. Ans, Vane
By sine rule, i’L_ = l"'rfl ri E _17.50 W W,
sin 90°  sin @ 1 sin60° _ﬁﬁq
17.50 “'
l.‘.l'r = = — il .
'~ 8es 20.25 m/s. Vi, inlet velocity
Now VH_: =V, = 20.25 mfs Triangle
From outlet velocity triangle, by sine mle Fig. 17.23 (a)
Ve __ w * 2025 20
in 120°  sin (60° @) 0.886  sin(60° - )
, : _ 20 = 0.866 " — "
sin (60" =) = 2025 0,855 = sin (58.75%)
60° = p = 58.75°
¢ = 60" —58.75=125". Ans.
1
(b) Work done per unit weight of water entering = - (Viey + Vi) 2 10 i)

Vi, = 3031 m/s and u; = 3 m/s

The value of V,,, is obtained from outlet velocity triangle
V, =V, cosg—tp= 20.25 cos 1.25% - 20.0 = 0.24 ny/s

) 1 =
wﬂrk dﬂnﬂ.l'l“ﬂit W'.'-tghl = -QE I]ﬂ.}] + '[LEAI # 20 = Hh2.28 HI’H.IIH- Anis,

Work done per Kg
(c) Efficiency = Energy supplied per kg
6228  62.28x2x 981

V.2 35 % 35
28

=99.74%. Ans
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