LESSON PLAN

DEPARTMENT OF ELECTRICAL ENGG. ITT, CHOUDWAR

SUBJECT: ENGG. MATH-III Periods: 4 per week SEMESTER:3rd

NAME OF FACULTY: Sk. S. Ali

No. of weeks: 15

Week	Class Day	Theory / Practical Topics
1st		Complex Numbers
	1 st	Real and Imaginary numbers, Complex numbers, conjugate complex numbers, Modulus and Amplitude of a complex number.
	2 nd	Geometrical Representation of Complex Numbers, Properties of Complex Numbers, Determination of three cube roots of unity and their properties 3
		rd Semester Electrical,De Moivre's theorem ,Solve problems on
2 nd	1 st	Matrices Define rank of a matrix. Perform elementary row transformations to determine the rank of a matrix. State Rouche's theorem for consistency of a system of linear equations in unknowns
	2 nd	System of mions of minors in similar with
		Solve equations in three unknowns testing consistency, Solve problems
		Linear Differential Equations ,
	1 st	Define Homogeneous and Non Homogeneous Linear Differential
- 1		Equations with constant coefficients with examples. Find general solution
$3^{\rm rd}$	2 nd	of linear Differential Equations in terms of C.F. and P.I.
	2""	Derive rules for finding C.F. And P.I. in terms of operator D, excluding. Define partial differential equation (P.D.E), Form partial differential equations by eliminating arbitrary constants and arbitrary functions
	1 st	Solve partial differential equations of the form $Pp + Qq = R$ Solve
		problems
4 th	2 nd	Laplace Transforms,
4		Define Gamma function and and find, Define Laplace Transform of a
		function and Inverse Laplace Transform, Derive L.T. of standard
		functions and explain existence conditions of L.T.
5 th	1 st	Explain linear, shifting property of L.T,Formulate L.T. of derivatives, integrals, multiplication by and division by t
3	2 nd	Derive formulae of inverse L.T. and explain method of partial fractions solve problem
		Fourier Series
	1 st	Define periodic functions, State Dirichlet's condition for the
6^{th}	and	Fourier expansion of a function and it's convergence
	2 nd	Express periodic function satisfying Dirichlet's conditions as a Fourier series.
7 th	1 st	State Euler's formulae

	2 nd	Define Even and Odd functions and find Fourier Series
8 th	1 st	Obtain F.S of continuous functions and functions having points of discontinuity
	2 nd	Solving problems
9 th	1 st	Numerical Methods
-	2 nd	Appraise limitation of analytical methods of solution of Algebraic Equations
	1 st	Derive Iterative formula for finding the solutions of Algebraic Equations by
10 th	2^{nd}	Bisection method
	1 st	Newton- Raphson method
11 th	2 nd	solve problems on (Bisection method, Newton- Raphson method)
	1 st	Finite difference and interpolation
12 th	2 nd	Explain finite difference and form
13 th	1 st	table of forward and backward difference
13	_	Define shift Operator and establish relation between & difference operator
	1 st	Derive Newton's forward and backward interpolation formula for equal intervals.
14 th	2 nd	State Lagrange's interpretation formula for unequal intervals
15 th	1 st	Explain numerical integration
13	2 nd	Newton's Cote's formula. ,Trapezoidal rule, Simpson's 1/3rd rule Solve problems