LESSON PLAN DEPARTMENT OF CIVIL ENGINEERING, ITT, CHOUDWAR

SUBJECT-STRUCTURAL DESIGN -II

Periods: 4 per week

SEMESTER: 5TH

NAME OF FACULTY-RITUPURNA SWAIN

Week	Class Day	Theory / Practical Topics
1st		1.Introduction:
	1 st	Common steel structures, Advantages & disadvantages of steel structures Types of steel, properties of structural steel.
	2 nd	Rolled steel sections, special considerations in steel design. Loads and load combinations. Structural analysis and design philosophy
2 nd		Brief review of Principles of Limit State design. 2.Structural Steel Fasteners and Connections:
	1 st	Bolted Connections, Classification of bolts, advantages and disadvantage of bolted connections.
		Different terminology, spacing and edge distance of bolt holes. Types of bolted connections.
	2 nd	Types of bolted connections. Types of action of fasteners, assumptions an
		principles of design. Strength of plates in a joint, strength of bearing type bolts (shear capacity& bearing capacity), reduction factors, and shear capacity of HSFG bolts.
ard	1 st	Analysis & design of Joints using bearing type and HSFG bolts (except eccentric load and prying forces) Efficiency of a joint.
3 rd	2 nd	Welded Connections: Advantages and Disadvantages of welded connection
	1 st	Types of welded joints and specifications for welding ,Design stresses in welds
4 th	2 nd	Strength of welded joints.
		3.Design of Steel tension Members: Common shapes of tension members.
5 th	1 st	Maximum values of effective slenderness ratio.
	2 nd	Maximum values of effective slenderness ratio.
6 th	1 st	Maximum values of effective slenderness ratio.
	2 nd	Analysis and Design of tension members.(Considering strength only and concept of block shear failure.)
		Analysis and Design of tension members.(Considering strength only and
7 th	1 st	concept of block shear failure.) 4.Design of Steel Compression members:
		Common shapes of compression members
	2 nd	Common shapes of compression members
8 th	1 st	Buckling class of cross sections, slenderness ratio

	$2^{\rm nd}$	Design compressive stress and strength of compression members
9 th	1 st	Analysis and Design of compression members (axial load only
	2 nd	Analysis and Design of compression members (axial load only) 5.Design of Steel beams:
		Common cross sections and their classification
10 th	1 st	Common cross sections and their classification
	2 nd	Deflection limits, web buckling and web crippling
11 th	1 st	Deflection limits, web buckling and web crippling
	2 nd	Design of laterally supported beams against bending and shear.
12 th	1 st	Design of laterally supported beams against bending and shear. 6.Design of Tubular Steel Structures:
	2 nd	Round Tubular Sections, Permissible Stresses Tubular Compression & Tension Members
13 th	1 st	Tubular Compression & Tension Members
	2 nd	Joints in Tubular trusses 7.Design of Masonry Structures: Design considerations for Masonry walls & Column
1.4th	1 st	Design considerations for Masonry walls & Column
14 th	2 nd	Design considerations for Masonry walls & Column.
15 th	1 st	Load Bearing & Non-Load Bearing walls, Permissible stresses, Slenderness Ratio, Effective Length, Height & Thickness.
	2 nd	Load Bearing & Non-Load Bearing walls, Permissible stresses, Slenderness Ratio, Effective Length, Height & Thickness.