LESSON PLAN

DEPARTMENT OF MECHANICAL ENGINEERING, ITT, CHOUDWAR

SUBJECT: THEORY 4 - THERMAL ENGINEERING-II

Periods:2 class days(4 hrs) per week SEMESTER:4th

NAME OF FACULTY:SANJAYA KUMAR NAYAK, LECT(MECH) No. of weeks: 15

Week	Class Day	Theory / Practical Topics
1st	1 st	Performance of I.C engine
		1.1 Define mechanical efficiency, Indicated thermal efficiency,
	2 nd	Relative Efficiency, brake thermal efficiency overall efficiency
		Mean effective pressure &specific fuel consumption.
2 nd	1 st	Define air-fuel ratio & calorific value of fuel.
	2 nd	Work out problems to determine efficiencies & specific fuel consumption.
3 rd	1 st	Air Compressor
		2.1 Explain functions of compressor & industrial use of compressor air
	2 nd	2.2 Classify air compressor & principle of operation.
4 th	1 st	Describe the parts and working principle of reciprocating Air compressor
	2 nd	Explain the terminology of reciprocating compressor such as bore, stroke,
		pressure ratio free air delivered &Volumetric efficiency.
5 th	1 st	Derive the work done of single stage & two stage compressor with and without
	,	clearance.
	2 nd	Solve simple problems (without clearance only)
6th	1 st	Properties of Steam
	nd	3.1 Difference between gas & vapours.
	2 nd	3.2 Formation of steam., 3.3 Representation on P-V, T-S, H-S, & T-H diagram.
7th	1 st	3.4 Definition & Properties of Steam.
	nd	3.5 Use of steam table & mollier chart for finding unknown properties.
	2 nd	Non flow & flow process of vapour., 3.7 P-V, T-S & H-S, diagram.
8th	1 st	3.8 Determine the changes in properties & solve simple numerical.
	2 nd	Steam Generator
	at	4.1 Classification & types of Boiler.
9th	1 st	4.2 Important terms for Boiler.
	2 nd	Comparison between fire tube & Water tube Boiler.
10th	1 st	Description & working of common boilers (Cochran, Lancashire, Babcock &
	- nd	Wilcox Boiler)
	2 nd	Boiler Draught (Forced, induced & balanced)
11th	1 st	Boiler mountings & accessories.
	2 nd	Steam Power Cycles
10.1	4 st	5.1 Carnot cycle with vapour.
12th	1 st	5.2 Derive work & efficiency of the cycle, 5.3 Rankine cycle.
	2 nd	5.3.1 Representation in P-V, T-S & h-s diagram.
	2	5.3.2 Derive Work & Efficiency., 5.3.3 Effect of Various end conditions in Rankine
124h	1 st	cycle., 5.3.4 Reheat cycle & regenerative Cycle.
13th	2^{nd}	Solve simple numerical on Carnot vapour Cycle & Rankine Cycle. Heat Transfer
		6.1 Modes of Heat Transfer (Conduction, Convection, Radiation).
14th	1 st	6.2 Fourier law of heat conduction and thermal conductivity (k).
1411	2 nd	6.3 Newton's laws of cooling
15+h	1 st	6.4 Radiation heat transfer (Stefan, Boltzmann & Kirchhoff's law) only statement,
15th	1	no derivation & no numerical problem.
	2 nd	6.5 Black body Radiation, Definition of Emissivity, absorptivity, & transmissibility
		0.5 Diack body Radiation, Definition of Emissivity, absorptivity, & transmissionity

