LESSON PLAN

DEPARTMENT OF MECHANICAL ENGINEERING, ITT, CHOUDWAR

SUBJECT: THERMAL ENGINEERING-I Periods: 4 per week

NAME OF FACULTY: SRIKANTA KUMAR PANIGRAHI, LECT (MECH)

SEMESTER: 3rd **No. of weeks:** 15

Week	Class Day	Theory / Practical Topics
1st	1 st	1.Thermodynamic Concept & Terminology:
150	1	System, Various types of thermodynamic Systems (closed, open, isolated),
		definition and explanation with examples from each.
	2^{nd}	Distinguish between Open & Closed System, Adiabatic & Isolated System
	3 rd	Thermodynamic properties of a system (pressure, volume, temperature, entropy,
	C	Enthalpy, Internal energy and units of measurement). Intensive & Extensive
		Property, Intrinsic & Extrinsic Property explanation with examples from each
	4 th	Definition and explanation regarding thermodynamic state, path, processes, cycle,
2 nd	1 st	Thermodynamic Equilibrium definition and its explanation
	2 nd	Quasi-static Process explanation
	3 rd	Conceptual explanation of energy and its sources
	4 th	Work, Various types of Work transfer like Displacement work, Electrical work
$3^{\rm rd}$	1 st	Shaft work, Paddle wheel work
3	2^{nd}	Heat, Specific heat, Heat Capacity, Sensible Heat, Latent Heat, Comparison
	2	between Work & Heat
	3 rd	Mechanical Equivalent of Heat
	4 th	Path function, Point function
4 th	1 st	2.Laws of Thermodynamics:
	-	State & explain Zeroth law of thermodynamics
	2 nd	State & explain First law of thermodynamics in closed system for cycle and
	_	change of state
	3 rd	Limitations of First law of thermodynamics
	4 th	First law of thermodynamics for open system, Control Volume, Steady flow
5 th	1 st	Derivation of Steady Flow Energy Equation (S.F.E.E.) for Single stream in and
3	1	single stream out
	2 nd	S.F.E.E. for multiple stream in and multiple stream out
	3 rd	Solving problems relating to S.F.E.E.
	4 th	Application of First law of Thermodynamics for open system like Turbine,
		Compressor, Throttle valve, Heat Exchanger
6 th	1 st	Second law of thermodynamics (Clausius & Kelvin Plank statements), PMM 2
	2 nd	Application of second law in heat engine, heat pump, Refrigerator &
		determination of efficiencies & C.O.P.
	3 rd	Reversibility & Irreversibility. Formulae in Reversible engine, heat pump and
		refrigerator
	4 th	Solving numerical problems on above
$7^{ m th}$	1 st	3.Properties of Perfect Gases:
		Perfect Gas, Laws of Perfect gas such as Boyle's law, Charle's law, Guy lussac
		law, General gas equation
	2^{nd}	Characteristic equation of gas, Characteristic gas constant, Universal gas
	,	constant, Avogadro's law, Dalton's law of partial pressure
	3 rd	Solving problems by applying various laws and the equation of gas.
	4 th	Explaining the specific heats of gas $(C_p \text{ and } C_v)$
8 th	1 st	Relation between C _p and C _v .
	$2^{\rm nd}$	Enthalpy of a gas, Work done during a non- flow process
	3 rd	Application of first law of thermodynamics to various non flow processessuch

		as Isothermal, Isobaric processes
	4 th	Isentropic and polytrophic process
9 th	1 st	Solving numerical problems on above processes
	2 nd	Free expansion & throttling process
	3 rd	4.Internal Combustion Engine:
		Explain & classify I.C engine.
	4 th	Terminology of I.C Engine such as bore, dead centers, stroke volume, piston speed &RPM
10 th	1 st	Explain the working principle of 4- stroke S.I engine
	2 nd	Explain the working principle of 4- stroke C.I engine
	3 rd	Explain the working principle of 2-stroke S.I engine
	4 th	Explain the working principle of 2-stroke C.I engine
11 th	1 st	Differentiate between 2-stroke & 4- stroke engine
	$2^{\rm nd}$	Differentiate between C.I & S.I engine
	3 rd	5. Gas Power Cycle:
		Carnot cycle
	4 th	Solving numerical problems on Carnot Cycle
12 th	1 st	Otto cycle.
	2 nd	Solving numerical problems on Otto Cycle
	3 rd	Diesel cycle.
	4 th	Solving numerical problems on Diesel Cycle
13 th	1 st	Solving numerical problems on Diesel Cycle
	2^{nd}	Dual cycle.
	3 rd	Solving numerical problems on Dual Cycle
	4 th	Solving numerical problems on Dual Cycle
14 th	1 st	6. Fuels and Combustion:
	md .	Define Fuel.
	2 nd	Types of fuel.
	3 rd	Application of different types of fuel.
th.	4 th	Extension of application of different types of fuel.
15 th	1 st	Heating values of fuel.
	2 nd	Quality of I.C engine fuels Octane number
	3 rd	Cetane number
	4 th	Remedial class
		Remedial class
		Remedial class

Sign. of Faculty