LESSON PLAN

DEPARTMENT OF MECHANICAL ENGINEERING, ITT, CHOUDWAR **Periods:** 4 per week

SUBJECT: FLUID MECHANICS

NAME OF FACULTY: SRIKANTA KUMAR PANIGRAHI, LECTURER(MECH)

Week	Class Day	Theory / Practical Topics
1st	1 st	Properties of Fluid
		Define fluid, Description of fluid properties like Density, Specific weight,
		specific gravity, specific volume
	2^{nd}	Solving simple problems
	3 rd	Definitions and Units of Dynamic viscosity, kinematic viscosity
	4^{th}	Newton's law of Viscosity, Types of Fluids
2^{nd}	1^{st}	Surface tension
	2^{nd}	Deriving S.T. for liquid droplet, hollow bubble and jet
	3 rd	Capillary phenomenon
	4^{th}	Deriving capillary rise and capillary depression
3 rd	1^{st}	Fluid Pressure and its measurements
		Definitions and units of fluid pressure, pressure intensity and pressure head.
	2^{nd}	Statement of Pascal's Law and its derivation
	3 rd	Solving problems on pressure, pressure head and conversion of units
	4^{th}	Concept of atmospheric pressure, gauge pressure, vacuum pressure and absolute
		pressure and their graphical representation
4^{th}	1 st	Pressure measuring instruments, Piezometer, Simple U-tube manometer
	2^{nd}	Differential U-tube manometer and solving problems on it
	3 rd	Inverted Differential U-tube manometer and solving problems on it
	4^{th}	Bourdon tube pressure gauge
5 th	1^{st}	Hydrostatics
		Definition of hydrostatic pressure, Total pressure and centre of pressure
	2^{nd}	Derivation of Total pressure and centre of pressure on immersed bodies of
		Vertical flat plate
	3^{rd}	Solving Simple problems on immerged vertical rectangular, circular and
	th	triangular flat plates.
	4 th	Solving Simple problems on immerged horizontal rectangular, circular and
_th	st st	triangular flat plates.
6 ^m	1 st	Archimedes principle, concept of buoyancy, Center of Buoyancy
	2 nd	Solving problems on buoyancy and center of Buoyancy
	3 ^{ru}	Meta center and meta centric height
th	4 th	Concept of floatation
7 ^m	1 st	Kinematics of Flow:
		Types of fluid flow: Steady & unsteady flow, Uniform & Non-uniform flow,
	and	Laminar & Turbulent flow, Compressible & Incompressible flow
	2 rd	Continuity equation(Statement and proof for one dimensional flow)
	3 ⁻¹	Solving problems on Continuity equation
oth	4	Bernoulli's theorem (Statement and proof)
8	1 st	Solving problems on Bernoulli's theorem (Statement and proof)
	2 rd	Applications of Bernoulli's theorem (Venturimeter, pitot tube)
	3 rd	Solving simple problems on Bernoulli's theorem
oth	4 ^{ui}	Limitations of Bernoulli's theorem
9"	1"	Orifices, notches & weirs
	and	Define orifice, Flow through orifice
	2"	Orifices coefficient & the relation between the orifice coefficients

	3 rd	Classifications of notches & weirs
	4 th	Discharge over a rectangular notch or weir
10^{th}	1 st	Solving problems on rectangular notch or weir
	2^{nd}	Discharge over a triangular notch or weir
	3 rd	Solving problems on triangular notch or weir
	4 th	Solving problems on triangular notch or weir
11 th	1^{st}	Flow through pipe: Definition of pipe, Classification of losses of energy in
		pipe (Major & Minor losses)
	2^{nd}	Head loss due to friction: Darcy's and Chezy's formula (Expression only)
	3^{rd}	Solving Problems using Darcy's and Chezy's formula.
	4^{th}	Solving Problems using Darcy's and Chezy's formula.
12 th	1^{st}	Minor energy losses types and its formulae
	2^{nd}	Solving Problems on it
	3 rd	Solving Problems on it
	4 th	Hydraulic gradient line (H.G.L) and Total Energy line(T.E.L) definition and its
		value with graphical representation
13 th	1 st	Solving Problems on H.G.L & T.E.L
	2^{nd}	Solving Problems on H.G.L & T.E.L
	3^{rd}	Impact of jets:
	4	Impact of jet on fixed vertical flat plate
	4 th	Impact of jet on moving vertical flat plates
14 th	1 st	Solving problems on flat plates
	2^{nd}	Derivation of work done on series of vanes and condition for maximum
		efficiency.
	3 rd	Impact of jet on fixed curved vanes
	4 th	Impact of jet on moving curved vanes, its illustration using velocity triangles
15 th	1 st	Derivation of work done, efficiency of series of moving curved vanes
	2^{nd}	Solving problems on curved vanes
	3 rd	Solving problems on curved vanes
	4 th	Remedial class
		Remedial class
		Remedial class

M

Sign. of faculty