LESSON PLAN

DEPARTMENT OF MECHANICAL ENGINEERING, ITT, CHOUDWAR

SUBJECT: TH-2 DESIGN OF MACHINE ELEMENTS **Periods:**4 per week **SEMESTER:** 5th

NAME OF FACULTY: GURU PRASAD SAHOO, LECTURER(MECH)

No. of weeks: 15

Week	Class Day	Theory / Practical Topics
1st	1 st	Introduction to Machine Design and Classify it.
	2 nd	Different mechanical engineering materials used in design with their uses
		and their mechanical and physical properties.
2 nd	1 st	Define working stress, yield stress, ultimate stress & factor of safety and
		stress –strain curve for M.S & C.I.
	2 nd	Modes of Failure (By elastic deflection, general yielding & fracture)
3 rd	1 st	State the factors governing the design of machine elements. Describe design
		procedure.
	2 nd	Design of fastening elements: - Joints and their classification.
4 th	1 st	State types of welded joints .
		State advantages of welded joints over other joints.
	2 nd	Design of welded joints for eccentric loads.
	2	State types of riveted joints and types of rivets.
5 th	1 st	Describe failure of riveted joints.
6 th	1	Determine strength & efficiency of riveted joints
	2 nd	, ,
	2	Design riveted joints for pressure vessel. Solve numerical on Welded Joint
	1 st	and Riveted Joints.
	1	Design of shafts and Keys:
	and	State function of shafts.
	2 nd	Design solid & hollow shafts to transmit a given power at given rpm based
		on a) Strength: (i) Shear stress, (ii) Combined bending tension; b) Rigidity
	ot.	(i) Angle of twist, (ii) Deflection, (iii) Modulus of rigidity
7 th	1 st	State standard size of shaft as per I.S.
		State function of keys, types of keys & material of keys.
		Describe failure of key, effect of key way
	2 nd	Design rectangular sunk key considering its failure against shear & crushir
		Design rectangular sunk key by using empirical relation for given diameter
		of shaft
8 th	1 st	State specification of parallel key, gib-head key, taper key as per I.S.
		Solve numerical on Design of Shaft and keys
	2 nd	Design of Coupling:Design of Shaft Coupling
9 th	1 st	Requirements of a good shaft coupling
	2 nd	Types of Coupling.
10 th	1 st	Design of Sleeve or Muff-Coupling
	2 nd	Design of Clamp or Compression Coupling
12 th	1 st	Solve simple numerical on above
	2 nd	Design a closed coil helical spring:
		Materials used for helical spring.
13 th	1 st	Terms used in compression spring.
	1	Stress in helical spring of a circular wire.
	2 nd	
14 th	1 st	Deflection of helical spring of circular wire
		Surge in spring.
	2 nd	Solve numerical on design of closed coil helical compression spring.
15 th	1 st	Revision
	2 nd	Revision
		α .

Sign. of faculty