LECTURE NOTE ON
 ENGINEERING MATH-III

 DEPARTMENT OF ELECTRICAL ENGG. ITT,CHOUDWAR

Prepared by:
Lecture Sk. S Ali (ITT CHOUDWAR)

CONTENTS

CHAPTER-1	MATRICES	2-7
CHAPTER - 2	LINEAR DIFFERENTIAL EQUATION	8-21
CHAPTER - 3	LAPLACE TRANSFORMATION	22-42
CHAPTER - 4	FOURIER SERIES	43-52
CHAPTER - 5	FINITE DIFFERENCE \& INTERPOLATION	53-61
CHAPTER - 6	NUMERICAL SOLUTION OF EQUATION	62-68

CHAPTER - 1

MATRICES

Minor - Minor is the determinate value which is obtained by deleting row \& coloumn of the particular element and denoted by the symbol \qquad , i-rows j-coloum.
$\left.\mathbf{E x}: \left\lvert\, \begin{array}{ccc}\lceil 2 & 1 & 3\rceil \\ 4 & -2 & 8 \\ \mid & & \\ 5 & 6 & 1\end{array}\right.\right\rfloor$
$\mathrm{M}_{21}=\left|\begin{array}{ll}1 & 3 \\ 6 & 1 \\ 2 & 3 \\ 2 & 8\end{array}\right|=1-18=-17$
Upper triangular Matrix - A matrix is said to be upper triangular if the elements below the main diagoned are zeros.
Ex. $\left[\left.\begin{array}{lll}1 & 5 & 9 \\ 0 & 3 & 7\end{array} \right\rvert\,\right.$
Elementary transformations : - The following operations three of which refer to rows are known as elementary transformations.
I. The interchange of any two rows (Rij)
II. The multiplication of any row by a non-zero scalar (kRi)
III. The addition of a constant multiple of the elements of any row to the corresponding elements of any other row ($\mathrm{Ri}+\mathrm{kRj}$)
Equivalent matrix - Two matrices A and B are said to be equivalent if one can be obtained from the other by a sequence of elementary transformations.
Rank of a matrix : A matrix is said to be of rank ' r ' if
(i) It has atleast one non-zero minor of order ' r '
(ii) Every minor of order higher than ' r ' varishes.

The rank of a matrix A shall be denoted by the symbol e(A).

Working Rule :

Step - I : Conver the matrix to the upper triangular form.
Step-II : The no.of non-zero rows is the rank of the matrix

Example-1:

Find the rank of the matrix $\left[\begin{array}{ccc}3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2\end{array}\right]$

Solution :

$$
\left.\begin{array}{l}
\mathrm{A}=\left[\begin{array}{ccc}
3 & -1 & 2 \\
-6 & 2 & 4 \\
-3 & 1 & 2
\end{array}\right] \\
\sim\left[\begin{array}{ccc}
3 & -1 & 2 \\
0 & 0 & 8 \\
-3 & 1 & 2
\end{array}\right] \rightarrow \mathrm{R}_{2}+2 \mathrm{R}_{1} \\
\sim\left[\left.\begin{array}{ccc}
3 & -1 & 2 \\
0 & 0 & 8
\end{array} \right\rvert\,\right. \\
\sim 0
\end{array} 0^{0} 1\right]_{\rightarrow \mathrm{R}_{3}+\mathrm{R}_{1}} .
$$

Consistency : A system of equatiars are said to be consistent if either they will have unique solution on many solution and sid to be inconsistent if they will have no solution.

$$
\begin{aligned}
& 2 x+3 y=8 \\
& x-2 y=4
\end{aligned}
$$

(unique solution)

$$
\begin{aligned}
& x+2 y=5 \\
& 2 x+4 y=10
\end{aligned}
$$

(many soluion)
$x-y=10$
$3 x-3 y=15$
(No solution)

Consistency of a system of linear equations :-
Consider a system of m linear equations

$$
\begin{align*}
& a m_{1} x_{1}+a m_{2} x_{2}+\ldots \ldots+a_{m n} x_{n}=b_{m} \tag{1}
\end{align*}
$$

Containing the n unknows $x_{1}, x_{2} \ldots x_{\mathrm{n}}$.
Writing the above equations in matrix form we get.

$\mathrm{C}=\mathrm{A} \vdots \mathrm{B} \quad[\square]$

A is the co-efficient matrix and
C is called agumented matrix

Rouche's Theorem : (Without proof)

The system of equations (1) is consistant if and only if the co-efficient matrix A and the augmented matrix C are of some rank otherwise the system is inconsistent.
Procedure to test the consistency of a system of equations in x unknows.
Find the ranks of the co-efficient matrix A and the augmented matrix ' C ' by reducing to the upper triangular form by elementary row operations.
(a) Consistant equations: If Rank $A=\operatorname{Rank} C$
(i) Unique solution $\operatorname{Rank} \mathrm{A}=\operatorname{Rank} \mathrm{C}=\mathrm{n}$

Where $\mathrm{n}=$ number of unknowns.
(ii) Infinite solution: $\operatorname{Rank} \mathrm{A}=\operatorname{Rank} \mathrm{C}=\mathrm{r} . \mathrm{r}<\mathrm{n}$.
(b) Inconstant equations if Rank A G Rank C

Example-2:

Show that the equations
$2 x+6 y=-11,6 x+20 y-6 z=-3,6 y-18 z=-1$ are not consistant.

Solution :

Writing the above equations in matrix form

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{ccc}
2 & 6 & 0 \\
6 & 20 & -6 \\
& & \\
0 & 6 & -18
\end{array}\right] \quad \mathrm{B}=\left[\begin{array}{l}
-117 \\
-3 \\
\lfloor \\
-1
\end{array}\right] \mathrm{C}=[\mathrm{A}: \mathrm{B}]
\end{aligned}
$$

$$
\begin{aligned}
& \sim \sim\left[\left.\begin{array}{ccccc}
\lceil 2 & 6 & 0 & : & -117
\end{array} \right\rvert\,\right.
\end{aligned}
$$

The rank of C is 3
and rank of A is 2
Rank A G Rank C.
\The system of equations are not consistant

Example - 3 :

Test consistency and solve :

$$
\begin{aligned}
& 5 x+3 y+7 z=4 \\
& 3 x+2 b y+2 z=9 \\
& 7 x+2 y+10 z=5
\end{aligned}
$$

Solution :

Writing the above equations in matrix form

$$
\begin{aligned}
& \left\lceil\left[\begin{array}{ccc}
5 & 3 & 7 \\
3 & 2 b & 2
\end{array}\left|\begin{array}{cc}
\lceil x\rceil \\
|y| & \lceil 4\rceil \\
|9|
\end{array}\right|, \quad \mathrm{AX}=\mathrm{B}, \mathrm{C}=[\mathrm{A}: \mathrm{B}]\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\stackrel{\mid 0}{0} \begin{array}{llll}
\square & \overline{5} & : & \overline{5} \mid
\end{array} \right\rvert\, \rightarrow \mathrm{R}_{3}{ }^{-7 \mathrm{R}}{ }_{1}
\end{aligned}
$$

Here Rank of A = Rank of C.
Hence the equations are consistent.
But the rank is less than 3 i.e. the number of unknows.
So its solutions are infinite

$$
\begin{aligned}
& x+\frac{3}{5} y+\frac{7}{5} z=\frac{4}{5} \\
& \frac{121}{5} y-\frac{11}{5} z=\frac{33}{5} \text { or } 11 \mathrm{y}-\mathrm{z}=3
\end{aligned}
$$

Let $\mathrm{z}=\mathrm{k}, 11 \mathrm{y}-\mathrm{k}=3$ or $\mathrm{y}=\frac{3}{+}+{ }^{k}$

$$
\begin{aligned}
& 3\lceil 3 \quad k\rceil 7 \quad 4 \text { or } x={ }^{11}-16_{k+}^{11} 7 \\
& { }^{x+} \underset{5}{\lfloor }\left\lfloor{ }_{11}^{+} 11\right]_{5}^{+}{ }_{5}^{k=}{ }_{5}^{-} \\
& \begin{array}{ll}
11 & -1
\end{array}
\end{aligned}
$$

Example-4:

Determine the values of $Z \& \mu$ so that the following equations have (i) no solution (ii) a unique solution (iii) infinite number of solutions.
$x+\mathrm{y}+\mathrm{z}=6, x+2 \mathrm{y}+3 \mathrm{z}=10, x+2 \mathrm{y}+\mathrm{Zz}=\mu$

Solution :

Writing the above equations in matrix form we have

$\backslash \mathrm{AX}=\mathrm{B}$
$\mathrm{C}=[\mathrm{A}: \mathrm{B}]$

$\sim\left[\left.\begin{array}{ccccc}\lceil 1 & 1 & 1 & : & 6 \\ 0 & 1 & 2 & : & 4\end{array} \right\rvert\,\right.$
(i) There is no, solution $=b p(A) G p(C)$
i.e. $Z-3=0$ or $Z=3 \& \mu-10 G 0$ or $\mu \mathrm{G} 10$
(ii) There is a unique solution if $\mathrm{p}(\mathrm{A})=\mathrm{p}(\mathrm{C})=3$
i.e., $Z-3 G 0$ or $Z G 3$ and μ have any value
(iii) There are infinite solution of $p(A)=p(C)=2$
$Z-3=10$ or $Z=S$ and $\mu-10=0$ or $\mu=10$
Assignments

1. Find the rank of the matrix $\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 7 \\ 3 & 6 & 10\end{array}\right]$
2. Test the consistency \& solve

$$
\begin{aligned}
& 4 x-5 y+z=2 \\
& 3 x+y-2 z=9 \\
& x+4 y+z=5
\end{aligned}
$$

3. Determine the values of $a \& \mathrm{~b}$ for which the system of equations

$$
\begin{aligned}
& 3 x-2 y+z=b \\
& 5 x-8 y+9 z=3 \\
& 2 x+y+a z=-1
\end{aligned}
$$

(i) has a unique solution (ii) has no solution (iii) has infinite solution.

CHAPTER-2

LINEAR DIFFERENTIAL EQUATIONS

Introduction :

The Mathematical formulation of many problems in science, Engineering and Economics gives rise to differential Equations.
For example : The problem of motion of a satellite

- The flow of fluids.
- The flow of current in an electric circuit
- The growth of population
- The Conduction of heat in rod etc leads to differential equations

Definition of Differential Equation :

A differential equation is an equation involving derivatives of one or more dependent variables with respect to one or more independent variables.
There are two types of Differential Equation

1. Ordinary differential Equation
2. Partial differential Equation

Example :
(a) $\frac{d y}{d x}+y=x^{2}$
(b) $\frac{d^{3} y}{d x^{3}}+3 \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+y=0$
$\partial u \quad(\partial u)^{2}$
(c) $\overline{\partial t}^{+}(\overline{\partial t})=4$

Linear differential Equation :

Linear differential Equations are those in which the dependent variable and its derivatives occur only in the first degree and are not multiplied together.
The differential Equation of the form
$\frac{d^{n} y}{d x^{n}}+\mathrm{k}_{1} \frac{d^{n-1} y}{d x^{n-1}}+\mathrm{k}_{2} \frac{d^{n-2} y}{d x^{n-2}}+\ldots . .+\mathrm{k}_{\mathrm{n}} \mathrm{y}=\mathrm{X}$.

Is known as linear differential Equation with constant coefficients. Where $\mathrm{k}_{1}, \mathrm{k}_{2} \ldots \ldots \ldots \ldots . . . \mathrm{k}_{\mathrm{n}}$ are constant, X is the function of x .
There are two types of linear differential Equation

1. Homogeneous LDE
2. Non Homogeneous LDE

Homogeneous Linear Differential Equation :

If RHS of Equation (1) is Equal to zero then we get homogeneous LDE.
ie $\frac{d^{n} y}{d x^{n}}+\mathrm{k}_{1} \frac{d^{n-1} y}{d x^{n-1}}+\mathrm{k}_{2} \frac{d^{n-2} y}{d x^{n-2}}+\ldots \ldots .+\mathrm{k}_{\mathrm{n}} \mathrm{y}=0$
Where $f(x)$ is the function of ' x '
The general solution format of Equation (1) of the form (C.S = C.F + P.I)
Where C.S. - Complete Solution
C.F - Complementary function
P.I - Particular integral

So complete solution of Equation becomes ($\mathrm{y}=\mathrm{C} . \mathrm{F}+$ P.I)
Note - 1: In case of Homogeneous LDE
C.S = C.F [where P.I = 0]

Note-2: In case of Non-Homogeneous LDE

$$
\mathrm{C} . \mathrm{S}=\mathrm{C} . \mathrm{F}+\mathrm{P} . \mathrm{I}
$$

Operator :

Denoting $d \quad d^{2} \quad d^{3} \quad$ by $\mathrm{D}, \mathrm{D}^{2}, \mathrm{D}^{3}$ etc.

$$
\overrightarrow{d x}, \overrightarrow{d x^{2}}, \overrightarrow{d x^{3}}
$$

So that $\frac{d y}{d x}=$ Dy

$$
\frac{d^{2} y}{d x^{2}}=\mathrm{D}^{2} \mathrm{y}
$$

................
$\frac{d^{n} y}{d x^{n}}=\mathrm{D}^{\mathrm{n}} \mathrm{y}$
Where D-Derivative
Then $\frac{1}{D}$ - Integration
Then operator form of equation (1) becomes

$$
\begin{aligned}
& D^{n} y+K D^{n-1} y+k_{2} D^{n-2} y+\ldots \ldots \ldots .+K_{n} y=X
\end{aligned}
$$

$$
\begin{align*}
& \rightarrow \quad \mathrm{F}(\mathrm{D}) \mathrm{y}=\mathrm{X} \tag{2}\\
& \text { Where } F(D)=D^{n}+k_{1} D^{n-1}+k_{2} D^{n-2}+\ldots \ldots \ldots .+k_{n} \text { of function } D
\end{align*}
$$

Auxiliary Equation (AE)

Putting the coefficient of y equal to Zero in Equation (2) we get an Auxiliary Equation. i.e.
F (D) $=0$
i.e. $D^{n}+k_{1} D^{n-1}+k_{2} D^{n-2}+\ldots+k_{n}=0$

Depending value of ' D ' in Auxiliary Equation, complementary function are different types.
Case - I : If roots are real \& Different
Let $\mathrm{m}_{1} \& \mathrm{~m}_{2}$ are two real roots and different
i.e. $m_{1} G m 2$

Then C.F $=\mathrm{C}_{1} \mathrm{em}_{1} x+\mathrm{C}_{2} \mathrm{em}_{2} x$
Where $\mathrm{C}_{1}, \mathrm{C}_{2}$, arearbitrary constant
Case - II :If roots are real \& Equal
Let $\mathrm{m}_{1} \& \mathrm{~m}_{2}$ are two real roots \& Equal
i.e $\mathrm{m}_{1}=\mathrm{m}_{2}$

The C.F $=\left(\mathrm{C}_{1}+\mathrm{C}_{2} x\right) \mathrm{em}_{1} x$
Similarly if $\mathrm{m}_{1}=\mathrm{m}_{2}=\mathrm{m}_{3}$ (Three roots are Equal)
Then C.F $=\left(\mathrm{C}+\mathrm{C} x_{2}+\mathrm{C} x_{3}^{2}\right) e^{m_{1} x}$
Case-III : If roots are Complex conjugate
Let $\mathrm{m}_{1}=\alpha \pm \mathrm{i} \beta$ are conjugate complex root
Then C.F $=e^{\alpha x}\left\{\mathrm{C}_{1} \cos \beta x+\mathrm{C}_{2} \sin \beta x\right\}$
Case-IV : If two conjugate complex roots are equal
Let $m_{1}=m_{2}=\alpha \pm i \beta$ are equal
Then C.F $=e^{\alpha^{x}}\left\{\mathrm{C}_{1}+\mathrm{C}_{2} x\right) \cos \beta x+\left(\mathrm{C}_{3}+\mathrm{C}_{4} x\right) \sin \beta x$

Example - 1 :

Solve $\frac{d^{2} y}{d x^{2}}-8 \frac{d y}{d x}+15 \mathrm{y}=0$

Solution :

The operator from of equation (1) becomes
($\left.D^{2}-8 D+15\right) y=0$
So Auxiliary Equation

$$
\begin{array}{r}
\quad D^{2}-8 D+15=0 \\
\rightarrow \quad(D-3)(D-5)=0
\end{array}
$$

$\rightarrow \mathrm{D}=3,5$
Then C.F $=\mathrm{C}_{1} e^{3 x}+\mathrm{C}_{2} e^{5 x}$
So complete Solution

$$
\begin{equation*}
\mathrm{y}=\mathrm{C}_{1} e^{3 x}+\mathrm{C}_{2} e^{5 x} \tag{Ans}
\end{equation*}
$$

Example-2:
Solve $\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x}+9 \mathrm{y}=0$

Solution :

The operator from of given equation is
$\left(D^{2}-6 D+9\right) y=0$
Then A.E $D^{2}-6 D+9=0$
$\rightarrow(\mathrm{D}-3)^{2}=0$
$\rightarrow \mathrm{D}=3,3$
C.F $=\left(\mathrm{C}_{1}+\mathrm{C} \underset{2}{x}\right) e^{3 x}$

Then C.S $y=\left(\mathrm{C}_{1}+\mathrm{C}_{2} x\right) e^{3 x}$
Example-3:
Solve $\left(D^{2}+4 D+5\right) y=0$
Solution :

$$
\begin{aligned}
& \text { So A.E } \quad D^{2}+4 D+5=0 \\
& D=\frac{-4 \pm \sqrt{16-4.1 .5}}{2.1} \\
& =\frac{-4 \pm \sqrt{-4}}{2} \\
& =\frac{-4 \pm 2 i}{2}=-2 \pm i
\end{aligned}
$$

Then C.F $=e^{-2 x}\left\{\mathrm{C}_{1} \operatorname{Cos} x+\mathrm{C} \operatorname{Sin} x\right\}$
So C.S $y=e^{-2 x}\left\{\mathrm{C}_{1} \operatorname{Cos} x+\mathrm{C}_{2} \operatorname{Sin} x\right\}$
(Ans)

Procedure to finding particular Integral.

We know that $F(D) y=X$

$$
\rightarrow \quad y=\frac{\mathrm{X}}{F(D)}
$$

Depending upon nature of ' X ', Particular integral are different types
Case-1: When $\mathrm{X}=e^{a x}$
Then P. $\mathrm{I}=\frac{e^{a x}}{F(a)}$ where $\mathrm{D}=a$
If $\mathrm{F}(a)=0$, Then $\mathrm{PI}=\frac{x e^{a x}}{F^{\prime}(a)}$ provided $\mathrm{F}^{\prime}(a) \mathrm{G} 0$
If $\mathrm{F}^{\prime}(a)=0$, Then PI $=\frac{x^{2} e^{a x}}{F^{\prime \prime}(a)}$ provided $\mathrm{F}^{\prime \prime}(a) \mathrm{G} 0$
And so on.

Case - 2: Whex $\mathrm{X}=\sin (a x+b)$ or $\operatorname{Cos}(a x+b)$

But not $\mathrm{D}=-a$

$$
=\frac{\operatorname{Sin}(a x+b)}{F\left(-a^{2}\right)} \text { provided F }\left(-a^{2}\right) \text { G } 0
$$

If $\mathrm{F}\left(-a^{2}\right)=0$, The above rule Fails \& We proceed further
ie P.I $=\frac{x \sin (a x+b)}{F^{\prime}\left(-a^{2}\right)}$, Provided $F^{\prime}\left(-a^{2}\right) G 0$
$2 \underline{\operatorname{Sin}}(\underline{a x+b})$
If $F^{\prime}\left(-a^{2}\right)=0$, Then P.I $=x \quad F^{\prime \prime}\left(-a^{2}\right)$, Provided F" $\left(-a^{2}\right) G 0$
And so on
Case - 3: When $\mathrm{X}=e^{a x} \mathrm{v}$, Where $\mathrm{v}=$ function of ' x '
Then PI $=\frac{e^{a x} v}{F(D)}$
$=e^{a x} \frac{1}{F(D+a)}^{v}$
Similary when $\mathrm{X}=e^{-a x} \mathrm{v}$
Then PI $=e^{-a x} \frac{1}{F(D+a)}_{v}^{v}$
Case - 4 : When $\mathrm{X}=x^{\mathrm{m}}\left(i e, x, x^{2}, x^{3} \cdots \cdots \cdots \cdot .\right.$.
Then PI $=\frac{x^{m}}{F(D)}=[F(D)]^{-1} x^{m}$
Convert F (D) into $\{1+\Phi(\mathrm{D})\}$ or $\{1-\Phi(\mathrm{D})\}$ by taking D^{m} (if possible). Then by using Binomial Theorom we find solution.
Case - 5 : When $\mathrm{X}=\mathrm{xv}$

$$
\begin{aligned}
& \text { Then P.I }=\frac{x v}{F(D)} \\
& =\left\{x-\frac{F^{\prime}(D)}{F(D)}\right\} \frac{v}{F(D)} \quad \text { Where } \mathrm{F}^{\prime}(\mathrm{D}) \text { is the Derivative of } \mathrm{F}(\mathrm{D})
\end{aligned}
$$

Case - 6: When $x=$ is any other function
Then P.I $=\frac{x}{F(D)}$
Convert F (D) into ($D-\alpha$) or $(D+\alpha)$ factor form
Then if $=\frac{x}{D-\alpha}=e^{\alpha x} \int X e^{-a t} d x \quad$ if $=\frac{x}{-\alpha}=e^{-a x} f e^{a t} d x D$

Example-4:

Find P. $\operatorname{Iof}\left(D^{2}+6 D+3\right) y=e^{2 x}$

Solution :

$$
\begin{array}{ll}
\text { P. I. }=\frac{e^{2 x}}{D^{2}+6 D+3} & \text { put } \mathrm{D}=\mathrm{a} \\
& \text { i.e. } \mathrm{D}=2
\end{array}
$$

Then P.I. $=\frac{e^{2 x}}{(2)^{2}+6(2)+3}$

$$
\begin{equation*}
=\frac{e^{2 x}}{4+12+3}=\frac{e^{2 x}}{19} \tag{Ans}
\end{equation*}
$$

Example - 5 :

Solution

$$
\text { Solve } \frac{d^{3} y}{d x^{3}}-\frac{d^{2} y}{3}+4 y \frac{d y}{d x^{2}}-2 y=e^{x}+\cos x
$$

The operator form of given equation becomes
$\left(D^{3}-3 D^{2}+4 D-2\right) y=e^{x}+\cos x$
So A.E $\quad D^{3}-3 D^{2}+4 D-2=0$
$\rightarrow \mathrm{D}-1,1 \pm \mathrm{i}$
$\rightarrow \mathrm{D}=1,1 \pm \mathrm{i}$
C.F $=\mathrm{C}_{1} e^{x}+e^{x}\left\{\mathrm{C}_{2} \operatorname{Cos} x+\mathrm{C}_{3} \operatorname{Sin} x\right\}$

Then PI $=\frac{e^{x}+\cos x}{D^{3}-3 D^{2}+4 D-2}$
$=\frac{e^{x}}{(D-1)\left(D^{2}-2 D+2\right)}+\frac{\cos x}{D^{3}-3 D^{2}+4 D-2}$
$\left.=\begin{array}{c}+\end{array}\right)$
$\overline{(D-1)\{1-2+2\}} \frac{\cos x}{(-1) D-3(-1)+4 D-2}$

$$
\begin{aligned}
& =\frac{e^{x}}{D-1}+\frac{\cot x}{3 D+1} \\
& =\frac{e^{x}}{x}+\frac{\cos x(3 D-1)}{(3 D+1)(3 D-1)} \\
& =x e^{x}+\frac{(3 D) \cos x-\cos x}{9 D^{2}-1} \\
& =x e^{x}+\frac{-3 \sin x-\cos x}{-9-1}=x e^{x}+\frac{1}{10}(3 \sin x+\cos x) \\
& \text { So C.S y }=\mathrm{C}_{1} e^{x}+e^{x}\left\{\mathrm{C}_{2} \cos x+\mathrm{C}^{3} \sin x\right)+x e^{x}+\frac{1}{10}(3 \sin x+\cos x\}
\end{aligned}
$$

Example - 6 :

Find the P.I. of $\left(\mathrm{D}^{3}+1\right) \mathrm{y}=e^{x} \cos x+\sin 3 x$
Solution :

$$
\begin{align*}
& =\frac{e^{x} \cos x+\sin 3 x}{D^{3}+1} \\
& =e^{x} \frac{\cos x}{(D+1)^{3}+1}+\frac{\sin 3 x}{D^{2} D+1} \\
& =e^{x} \frac{\cos x}{-D^{3}+3 D^{2}+3 D+2}+\frac{\sin 3 x}{-9 \cdot D+1} \\
& =e^{x} \frac{\cos x}{D^{3}+3 D^{2}+3 D+2}+\frac{\sin 3 x}{1-9 D} \\
& =e^{x}+\frac{\cot x}{-D+3(-1)+3 D+2}+\frac{\sin 3 x}{1-9 D} \\
& =e^{x} \frac{\cos x(2 D+1)}{(2 D-1)(2 D+1)}+\frac{\sin 3 x(1+9 D)}{(1-9 D)(1+9 D)} \\
& =e^{x} \frac{2 D(\cos x)+\cos x}{4 D^{2}-1}+\frac{\sin 3 x+9 D(\sin 3 x)}{1-81 D^{2}} \\
& =e^{x} \frac{-2 \sin x+\cos x}{4(-1)-1}+\frac{\sin 3 x+27 \cos 3 x}{1-81(-9)} \\
& ={ }_{5}^{e^{x}}(2 \sin x-\cos x)+{ }^{1}(+\underset{730}{ } \sin 3 x+27 \cos 3 x) \tag{Ans}
\end{align*}
$$

Example - 7 :

Solve $\frac{d^{2} y}{d x^{2}}+9 y=x \cos x$

Solution :

The operator form is $\left(D^{2}+9\right) y=x \cos x$
So A.E D ${ }^{2}+9=0$
$\rightarrow \mathrm{D}^{2}=-9$
$\rightarrow \mathrm{D}=\sqrt{-9}$
$\rightarrow \mathrm{D}= \pm 3 \mathrm{i}$
C. $\mathrm{F}=\mathrm{C}_{1} \cos 3 x+\mathrm{C}_{2} \sin 3 x$

Now P.I $=\frac{x \cos x}{D^{2}+9}$
Here $F(D)=D^{2}+9$
$F^{\prime}(D)=2 D$
Then PI $=\left\{x-\frac{F^{\prime}(D)}{F(D)}\right\}-V$

$$
=\left\{x-\frac{2 D}{D^{2}}+\right\}
$$

$$
=\left\{\begin{array}{l}
\frac{D^{2}+9}{D+9} \quad \text { put } \mathrm{D}^{2}=-1 \\
\left.\{x-2 D\}^{2}\right\}^{2} \cos x \\
D^{2}+9 \\
=1+9
\end{array}\right.
$$

$$
=\frac{x \cos x}{8}-\frac{2 D(\cos x)}{8\left(D^{2}+9\right)}
$$

$$
=\frac{x \cos x}{8}+\frac{2 \sin x}{8 \times 8}
$$

$$
=\frac{x \cos x}{8}+\frac{\sin x}{32}=\frac{4 x \cos x+\sin x}{32}
$$

$$
\begin{equation*}
\text { So C.S } y=C \cos x+C \sin 3 x+\underline{4 x \cos x+\sin x} \tag{Ans}
\end{equation*}
$$

Example - 8 :

Solve $\frac{d^{2} y}{d x^{2}}+4 y=x^{2}$

Solution :

The operation form given equation becomes

$$
\left(D^{2}+4\right) y=x^{2}
$$

$$
\begin{aligned}
& \text { So A.E. } \quad D_{2}+4=0 \\
& \rightarrow \mathrm{D}^{2}=-4 \\
& \rightarrow \mathrm{D}=\sqrt{-4} \\
& \rightarrow \mathrm{D}= \pm 2 \mathrm{i} \\
& \text { C. } \mathrm{F}=\mathrm{C}_{1} \cos 2 x+\mathrm{C}_{2} \sin 2 x \\
& \text { Then P.I }=\frac{\left.x^{2} D^{2}\right)^{2}}{4\left(1+\frac{D^{2}}{4}\right)^{2}} \\
& =-\left(1+\frac{D^{2}}{4}\right)^{-1} x^{2} \\
& \begin{aligned}
&= 1\left\{1-D^{2}+D^{2}\right. \\
& \underline{4} \underline{4} \underline{16} \ldots \ldots \ldots \\
&=1\}_{2} \\
&=D_{2}\left(x^{2}\right)+D^{2}2) \ldots \ldots \ldots\}
\end{aligned} \\
& \left.\left.=\begin{array}{ll}
& -\{x \\
4 & - \\
4
\end{array}\right\} x^{2}-{ }^{2}+0\right\} \\
& =\frac{4\left\{\left(2 x_{2}^{2}-1\right\}\right.}{(\square)}=\underline{2 x_{8}^{2}-1}
\end{aligned}
$$

So C.S $y=C_{1} \operatorname{Cos} 2 x+\mathrm{C}_{2} \sin 2 x+\frac{2 x^{2}-1}{8}$
(Ans)

Other Method for finding P. I :

Method of variation of Parameters :
This method is applies to equations of the form
$y^{\prime \prime}+\mathrm{py}^{\prime}+\mathrm{qy}=x$
Where $\mathrm{p}, \mathrm{q} \& x$ are function of x.
Then P. I $=-y_{1} \int \frac{y_{2} x}{w} d x+y_{2} \int \frac{y_{1} x}{w} d x$
Where $y_{1} \& y_{2}$ are the solution of $y^{\prime \prime}+p y^{\prime}+q y=0$ of the form $=c_{1} y_{1}+c_{2} y_{2} \& w$ is called wronskian of $y_{1} \& y_{2}$
Calculate by formula w (y, y) $\begin{gathered}\text {) } \\ 2\end{gathered}\left|\begin{array}{ll}y^{1} & y^{2} \\ y_{2}^{\prime} & y^{\prime}\end{array}\right|$

Example - 9 :

Solve $\frac{d^{2} y}{d x^{2}}+y=\operatorname{cosec} x$

Solution :

The operator form of given equation is

$$
\left(\mathrm{D}^{2}+1\right)=\operatorname{cosec} x
$$

So A.E $\mathrm{D}^{2}+1=0$
$\rightarrow \mathrm{D}^{2}=-1$
$\rightarrow \mathrm{D}=\sqrt{-1}=0 \pm i$

$$
\text { C.F. }=\mathrm{C}_{1} \cos x+\mathrm{C}_{2} \sin x
$$

Here $y_{1}=\cos x y_{2}=\sin x$

$$
\begin{gathered}
\mathrm{W}(\underset{1}{\mathrm{y}, \mathrm{y}} \underset{2}{\mathrm{y}})=\left|\begin{array}{ll}
\cos x & \sin x \\
-\sin x & \cos x
\end{array}\right| \\
=\cos ^{2} x+\sin ^{2} x=1
\end{gathered}
$$

Then P.I $=-\cos x \int \frac{\sin x \cdot \operatorname{cosec} x}{1} d x+\sin x \int \frac{\sin x \cdot \operatorname{cosec} x}{1} d x$
$=-\cos x \int \sin x \cdot \frac{1}{\sin x} d x+\sin x \int \cos x \frac{1}{\sin x} d x$
$=-\cos x \int d x+\sin x \int \cot x d x$
$=-\cos \mathrm{x}(\mathrm{x})+\sin \mathrm{x} \ln \sin \mathrm{x}$
So C.S y $=\mathrm{C}_{1} \cos x+\mathrm{C}_{2} \sin x+\sin x \operatorname{Insin} x-x \cos x$

Partial Differential Equation

Let $\mathrm{z}=f(x, \mathrm{y})$ be a function containing two independent variable $x \& \mathrm{y}$ and z is the Dependent variable.
Notation : Let $\mathrm{z}=f(x, y)$ be a function of $x \& y$
Then $\frac{\partial z}{\partial x}=p \quad \frac{\partial z}{\partial y}=q$

Formation of Partial differential Equation

A partial differential equation can be formed by
(i) Eliminating arbitrary constant.
(ii) Eliminating arbitrary function.

Example - 10 :

Form a partial different equation by eliminating function

$$
\begin{equation*}
\mathrm{Z}=f\left(x^{2}+\mathrm{y}^{2}\right) \tag{1}
\end{equation*}
$$

Solution :

Differentiating partially w.r.t. x \& y in equation (1) we get

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=f^{\prime} x^{2}+y^{2}, 2 x \text { (taking y as a constant) }
\end{aligned}
$$

$$
\begin{equation*}
\rightarrow \quad \mathrm{p}=f^{\prime}\left(x^{2}+\mathrm{y}^{2}\right) \cdot 2 x \tag{2}
\end{equation*}
$$

Similarly $\mathrm{q}=f^{\prime}\left(x^{2}+\mathrm{y}^{2}\right) .2 \mathrm{y}$
Dividing (2) \& (3) we get $\frac{p}{q}=\frac{f^{\prime}\left(x^{2}+y^{2}\right) \cdot 2 x}{f^{\prime}\left(x^{2}+y^{2}\right) \cdot 2 y}$

$$
\begin{aligned}
\frac{p}{q} & =\frac{x}{y} \\
\rightarrow \quad \mathrm{py}-\mathrm{q} x & =0
\end{aligned}
$$

Linear Equation of the First order :

A Linear partial differential equation of the 1st order is of the form

$$
\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}
$$

Where $\mathrm{P}, \mathrm{Q} \& \mathrm{R}$ are function of $x, \mathrm{y}, \mathrm{z}$.
This equation also known as Lagrange's Linear equation
NOTE :
The general solution of the liner partial differential equation $\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$ is

$$
\phi(a, b)=0
$$

Or $\quad a=\phi(b)$
Or $\mathrm{b}=\phi(a)$
Where ϕ is an arbitrary function $\& \mathrm{u}(x, \mathrm{y}, \mathrm{z})=\mathrm{a} \& \mathrm{v}(x, \mathrm{y}, \mathrm{z})=\mathrm{b}$ form the solution of the equation

$$
\frac{d x}{P}=\frac{d y}{Q}=\frac{d z}{R}
$$

Then that can be solved by two methods
(1) Method for Grouping
(2) Method for Multipliers

Method or grouping :

Take any two fraction from Subsidiary Equation such that the $3^{\text {rd }}$ variable is absent or it may be cancelled.
For example take $\frac{d x}{P}=\frac{d y}{Q}$ (such that z may be absent)

After Integration we get $f(x, y)=a$
Similarly we take $\frac{d y}{Q}=\frac{d z}{R}$
After Integation $f(\mathrm{y}, \mathrm{z})=\mathrm{b}$
So general solution is $a=\varnothing$ (b)

$$
\begin{array}{ll}
\text { or } & b=\phi(a) \\
\text { or } & \phi(a, b)=0
\end{array}
$$

Method for Multipliers

Let us choose the multiplier's ($\mathrm{P}^{\prime}, \mathrm{Q}^{\prime}, \mathrm{R}^{\prime}$) such
That $P^{\prime}+Q^{\prime}+R R^{\prime}=0$
Then we write $P^{\prime} d x+Q^{\prime} d y+R^{\prime} d z=0$
On Integration we get $f(x, y, z)=a$
Similarly choosing the multipliers (P", Q", R") such that PP" $+\mathrm{QQ}^{\prime \prime}+\mathrm{RR} "=0$
On Integration we get $\mathrm{g}(x, \mathrm{y}, \mathrm{z})=\mathrm{b}$
So general solution is $a=\phi(\mathrm{b})$ or $\phi(a, \mathrm{~b})=0$

Example-11 :

Solve $y^{2} z p+z^{2} x q=y^{2} x$

Solution :

It is of the form $\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$
Where $\mathrm{P}=\mathrm{y}^{2} \mathrm{z}, \mathrm{Q}=\mathrm{z}^{2} x, \mathrm{R}=\mathrm{y}^{2} x$
So its S.E $\frac{d x}{y^{2} z}=\frac{d y}{z^{2} x}=\frac{d z}{y^{2} x}$
Taking $1^{\text {st }}$ and $3^{\text {rd }}$ fraction, we get

$$
\frac{d x}{y^{2} z}=\frac{d y}{y^{2} x}\left(\text { Here } 3^{\text {rd }} \text { variable } \mathrm{y}^{2} \text { is cancelled }\right)
$$

$\rightarrow \quad x \mathrm{~d} x=\mathrm{zd} x$
Integrating both sides we get $\int x d x=\int z d z$
$\rightarrow \frac{x^{2}}{2}=\frac{z^{2}}{2}+c$
$\rightarrow \quad x^{2}-z^{2}=2 \mathrm{c}=a$
Similarly taking $2^{\text {nd }}$ and $3^{\text {rd }}$
i.e. $\frac{d y}{z^{2} x}=\frac{d z}{y^{2} x}$
$\rightarrow y^{2} d y=z^{2} d z$

Integrating both sides we get
$\rightarrow \frac{y^{3}}{3}=\frac{z^{3}}{3}+c^{1}$
$\rightarrow \mathrm{y}^{3}-\mathrm{z}^{3}=3 \mathrm{c}^{1}=\mathrm{b}$
So general solution in $x^{2}-z^{2}=\phi\left(y^{3}-z^{3}\right)$
(Ans.)

Example - 12 :

Solve $x\left(z^{2}-y^{2}\right) p+y\left(x^{2}+y^{2}\right) q=z=\left(y^{2}-x\right)$

Solution :

It is the equation of the form
$\mathrm{Pp}+\mathrm{Qq}=\mathrm{R}$
Where $\mathrm{P}=x\left(\mathrm{z}^{2}-\mathrm{y}^{2}\right) \quad \mathrm{Q}=\mathrm{y}\left(x^{2}-\mathrm{z}^{2}\right) \mathrm{R}=\mathrm{z}\left(\mathrm{y}^{2}-x^{2}\right)$
So its S.E is $\frac{d x}{x\left(z^{2}-y^{2}\right)}=\frac{d y}{y\left(x^{2}-z^{2}\right)}=\frac{d z}{z\left(y^{2}-x^{2}\right)}$
Let us choose multipliers (x, y, z) i.e $\mathrm{P}^{\prime}=x, \mathrm{Q}^{\prime}=\mathrm{y}, \mathrm{R}^{\prime}=\mathrm{z}$
Such that $x . x\left(z^{2}-y^{2}\right)+y . y\left(x^{2}-z^{2}\right)+z . z\left(y^{2}-x^{2}\right)$
$=x^{2} z^{2}-x^{2} y^{2}+y^{2} x^{2}-y^{2} z^{2}+z^{2} y^{2}-z^{2} x^{2}$
$=0$
Then we write $x \mathrm{~d} x+\mathrm{ydy}+\mathrm{zdz}=0$
On integration we set

$$
\begin{gathered}
\frac{x^{2}}{2}+\frac{y^{2}}{2}+\frac{z^{2}}{2}=c \\
\rightarrow x^{2}+y^{2}+\mathrm{z}^{2}=2 \mathrm{c}=a
\end{gathered}
$$

Such that ${\underset{x}{x}}_{x}^{x}\left(z^{2}-y^{2}\right)+\frac{1}{y}\left(x^{2}-z^{2}\right)+{\underset{z}{z}}_{\underset{z}{z}}\left(y^{2}-x^{2}\right)$

$$
=z^{2}-y^{2}+x^{2}-z^{2}+y^{2}-x^{2}=0
$$

Then $\frac{1}{x} \mathrm{~d} x+\frac{1}{y} \mathrm{dy}+\frac{1}{z} \mathrm{dz}=0$
On integration we get

$$
\log x+\log y+\log z=\log b
$$

$\rightarrow \quad \log (x y z)=\operatorname{logb}$
$\rightarrow \quad x \mathrm{yz}=\mathrm{b}$
So general solution in $x^{2}+y^{2}+z^{2}=\phi(x y z)$

Assignment

Solve the followings :

1. $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x} 10 y \quad 6 e$
2. $y^{\prime \prime}+3 y^{\prime}+2 y=4 \cos ^{2} x$
3. $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x 2 e x$
4. $\left(\mathrm{D}^{2}+a^{2}\right) y=k \cos (a x+b)$
5. $(\mathrm{D}-2)^{2} y=8\left(e^{2 x}+\sin 2 x\right)$
6. $\frac{d^{3} y}{d x^{3}}-\frac{d^{2} y}{d x^{2}}-6 \frac{d y}{d x} \neq+x^{2}$

CHAPTER - 3

LAPLACE TRANSFORMS

GAMMA FUNCTION :

The grmma function is defined as

$$
\begin{equation*}
\Gamma(n)=\int_{0}^{\infty} e^{-x} x^{n-1} d x, n>0 \tag{1}
\end{equation*}
$$

It defines a function of n for positive values of n.
Value of $F(1)$:
We have,

$$
\begin{equation*}
\Gamma(1)=\int_{0}^{\infty} e^{-x} x^{0} d x=\int_{0}^{\infty} e^{-x} d x=\left|-e^{-x}\right|^{\infty}=1 \tag{2}
\end{equation*}
$$

Hence, $F(1)=1$

Reduction formula for $\mathrm{F}(\mathrm{n})$:

We have,

$$
\begin{array}{rl}
\Gamma(n+1)= & \int_{0}^{\infty} e^{-x} x^{n} d x \text { [Integrating by parts] } \\
& =-\left.x^{n} e^{-x}\right|^{\infty} \tag{3}\\
& 0+n \int_{0}^{\infty} e x d r \\
-x-1 & d x=0+\mathrm{nF}(\mathrm{n})
\end{array}
$$

$\backslash \mathrm{F}(\mathrm{n}+1)=\mathrm{nF}(\mathrm{n})$,
which is the reducation formula for $\mathrm{F}(\mathrm{n})$.
Using the reduction formula for $F(n)$, we can write the value of $F(n)$ in the form,

$$
\begin{equation*}
\Gamma(n)=\frac{\Gamma(n+1) \ldots}{n} \tag{4}
\end{equation*}
$$

Thus (1) and (4) together give a complete definition of $F(n)$ defined for all values of n except when n is zero or a negative integer and its graph is as shown in the following figure.

VALUE OF F(n) IN TERMS OF FACTORIAL

Using $F(n+1)=n F(n)$ successively, we get

$$
\begin{aligned}
& \mathrm{F}(2)=\mathrm{F}(1+1)=1 \times \mathrm{F}(1)=1! \\
& \mathrm{F}(3)=\mathrm{F}(2+1)=2 \times \mathrm{F}(2)=2 \times 1=2! \\
& \mathrm{F}(4)=\mathrm{F}(3+1)=3 \times \mathrm{F}(3)=3 \times 2!=3!
\end{aligned}
$$

In general $\mathrm{F}(\mathrm{n}+1)=\mathrm{n}$!, provided n is a positive integer.
Taking $\mathrm{n}=0$, it defines $0!=\mathrm{F}(1)=1$
Thus, $F(n+1)=n$!
(for $\mathrm{n}=0,1,2,3 \ldots \ldots$.....
Value of $\mathrm{F}{ }_{\mathbf{2}}$:
We have,

$$
\begin{aligned}
& =2 \int_{0} e \quad d y \text {, Which is also }=2 \int_{0} e d x \\
& \left.\therefore\left[\Gamma \left\lvert\, \begin{array}{l}
(1)]^{2} \\
2
\end{array}\right.\right)\right]=4 \int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y \quad[\text { Put } x=r \cos \theta \text { and } \mathrm{y}=\mathrm{r} \sin \theta] \\
& \left.=4 \int_{0}^{\pi / 2} \int_{0}^{\infty-r^{2}} r d r d \theta=4 \cdot \frac{-}{2} \int_{0}^{\infty} e^{-r^{2}} r d r=2 \pi=\left\lvert\,\left(\begin{array}{cc}
1 & -r^{2}
\end{array}\right)\right.\right\rceil_{\infty}
\end{aligned}
$$

Hence $\Gamma_{\left(\frac{1}{2}\right)}^{(1)}=\sqrt{\pi}=1.772$

Example-1:

Evaluate,
$\frac{\Gamma\left(\frac{3}{2}\right) \cdot \Gamma(\underline{5}) \cdot \Gamma(\underline{1})}{\Gamma(4) \cdot \Gamma(6) \cdot \Gamma(8)}$

Solution :

We have,

$$
=\frac{\sqrt{ }_{\pi \cdot 3 \cdot \Gamma^{(1}\left(z^{+1}\right) \sqrt{\pi}}^{4.3!\cdot 5!\cdot 7!}}{}=\frac{{ }^{3} \pi \cdot \Gamma\binom{1}{2}}{4.3!\cdot 5!\cdot .7!}=\frac{3 \pi \sqrt{\pi}}{8.3!.5!.7!}
$$

$$
=\frac{\pi \sqrt{\pi}}{16!.5!.7!}=\frac{\pi \sqrt{\pi}}{9676800}
$$

Example-2:

Evaluate $\mathrm{F}(-3.5)$

Solution :

We know that, $\Gamma(n)=\frac{\Gamma(n+1)}{n}$
For all n expect n is zero or a negative integer.
Now, we have,

$$
\begin{aligned}
& \mathrm{F} \quad=\frac{\Gamma(-3.5+1)}{-3.5} \neq \frac{\Gamma(-2.5)}{-3.5}=\frac{\Gamma(-2.5+1)}{(-3.5)(-2.5)}=\frac{\Gamma(-1.5)}{(3.5)(2.5)} \\
&=\frac{\Gamma(-1.5+1)}{(3.5)(2.5)(-1.5)}=\frac{\Gamma(-0.5)}{(3.5)(2.5)(-1.5)}=\frac{\Gamma(-0.5+1)}{(3.5)(2.5)(-1.5)(-0.5)} \\
&=\frac{\Gamma(0.5)}{(3.5)(2.5)(1.5)(0.5)}=\frac{\sqrt{\pi}}{(3.5)(2.5)(1.5)(0.5)}=0.27
\end{aligned}
$$

$$
\backslash F(-3.5)=0.27
$$

Laplace transforms :

Definition :

Let $f(\mathrm{t})$ be a function of t defined for all positive values of t . Then the Laplace transforms of $f(\mathrm{t})$, denoted by $\mathrm{L}\{f(\mathrm{t})\}$ is defined by

$$
L\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

Provided that the integral exists. s is a parameter which may be a real or complex number.
$\mathrm{L}\{f(\mathrm{t})\}$ being clearly a function of s is briefly written as $\overline{f(s)}$.
i.e., $\mathrm{L}\{f(\mathrm{t})\}=\overline{f(s)}$.

This implies that, $f(\mathrm{t})=\mathrm{L}^{-1}\{\overline{f(s)}\}$
Then $f(\mathrm{t})$ is called the inverse Laplace transform of $\overline{f(s)}$.
The symbol L, which transforms $\mathrm{f}(\mathrm{t})$ into $\bar{f}(s)$, is called the Laplace transformation operator.

CONDITIONS FOR THE EXISTENCE :

The Laplace transform of $f(\mathrm{t})$ i.e., $\int_{0}^{\infty} e^{-s t} f(t) d t$ exists for $\mathrm{s}>\mathrm{a}$, if
(i) $f(\mathrm{t})$ is continuous
and (ii) $\lim _{t \rightarrow \infty}\left\{e^{-a t} f(t)\right\}$ is finite.

TRANSFORMS OF ELEMENTARY FUNCTIONS :

The direct application of the definition gives the following formulae :
(1) $\mathrm{L}\{1\}=\frac{1}{s}(\mathrm{~s}>0)$
$\lceil n!$, when $n=0,1,2,3, \ldots \ldots .$.
(2) $\mathrm{L}\left\{\mathrm{t}^{\mathrm{n}}\right\}=\left\{\begin{array}{l}\mid \overline{s^{n+1}} \\ \left\lvert\, \begin{array}{l}\Gamma(n+1) \\ s^{n+1}\end{array}\right., \text { otherwise }(s>0)\end{array}\right.$
(3)
$\mathrm{L}\left\{e^{a t}\right\}=\frac{1}{s-a} \quad(\mathrm{~s}>a)$
(4) $\mathrm{L}\{\sin \mathrm{at}\}=\frac{a}{s^{2}+a^{2}} \quad(\mathrm{~s}>0)$
(5) $\quad \mathrm{L}\{\cos \mathrm{at}\}=\frac{s}{s^{2}-a^{2}} \quad(\mathrm{~s}>0)$
(6) $\mathrm{L}\{\sinh a t\}=\frac{a}{s^{2}-a^{2}}(\mathrm{~s}>|a|)$
(7) $\mathrm{L}\{\cosh a t\}=\frac{s}{s^{2}-a^{2}} \quad(\mathrm{~s}>|a|)$

PROOFS :

(1) $L\{1\}=\int_{0}^{\infty} e^{-s t} \cdot 1 \cdot d t=\left|\frac{-e^{-s t}}{s}\right|_{0}^{\infty}=\frac{1}{s}$, if $\mathrm{s}>0$
(2) $L\left\{t^{n}\right\}=\int_{0}^{\infty} e^{-s t} \cdot t^{n} d t=\int_{0}^{\infty} e^{-p} \cdot\left(\frac{(p)^{n}}{s}\right) \cdot \frac{.}{s}$, on putting st $=\mathrm{p}$

$$
\begin{aligned}
& =\int_{s^{n+1}}^{1} \int_{0}^{\infty-} e^{p} \cdot p^{n} d p \\
& =\frac{\Gamma(n+1)}{s^{n+1}}, \text { if } \mathrm{n}>-1 \text { and } \mathrm{s}>0
\end{aligned}
$$

If n is a positive integer, $\mathrm{F}(\mathrm{n}+1)=\mathrm{n}!$. Therefore, $L\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}$, if $\mathrm{s}>0$
(3) $L\left\{e^{a t}\right\}=\int_{0}^{\infty} e^{-s t} \cdot e^{a t} d t=\int_{0}^{\infty} e^{-(s-a) t} d t=d t=\left|\frac{e^{-(s-a) t}}{-(s-a)}\right|_{0}^{\infty}=\frac{1}{s-a}$, if $\mathrm{s}>a$
(4) $\mathrm{L}\{\sin a t\}=\int_{0}^{\infty} e^{-s t} \sin a t d t=\left|\frac{e^{-s t}}{s^{2}+a^{2}}(-s \sin a t-a \cos a t)\right|_{0}^{\infty}=\frac{a}{s^{2}+a^{2}}$, if $\mathrm{s}>0$
(5) $\mathrm{L}\{\cos a t\}=\int_{0}^{\infty} e^{-s t} \cos a t d t=\left|\frac{e^{-s t}}{s^{2}+a^{2}}(-s \cos a t+a \sin a t)\right|_{0}^{\infty}=\frac{s}{s^{2}+a^{2}}$, if $\mathrm{s}>0$
(6) $\mathrm{L}\{\sinh \operatorname{at}\}=\int_{0}^{\infty} e^{-s t} \sinh$ at $d t=\int_{0}^{\infty} e^{-s t}\left(\frac{\left.e^{a t}-e^{-a t}\right)}{2}\right) d t$
(7) $\mathrm{L}\{\cosh a t\}=\int_{0}^{\infty} e^{-s t} \cosh a t d t=\int_{0}^{\infty} e^{-s t}\left(\frac{\left.e^{a t}+e^{-a t}\right)}{2}\right) d t=\frac{1}{2}\left\lceil_{0}^{\infty} e^{-\infty} e^{(s-a) t} d t+\int_{0}^{\infty} e^{-(s+a) t} d t\right\rfloor$

$$
=\frac{1\lceil }{2}\left\lfloor\frac{1}{\lfloor s-a}+\frac{1}{s+a}\right\rceil=\frac{s}{s^{2}-a^{2}}, \text { for } \mathrm{s}>|a|
$$

PROPERTIES OF LAPLACE TRANSFORMS :

1. LINEARITY PROPERTY:

If $a, \mathrm{~b}, \mathrm{c}$ be any constants and $\mathrm{f}, \mathrm{g}, \mathrm{h}$ any functions of t , then $\mathrm{L}\{a f(\mathrm{t})+\mathrm{bg}(\mathrm{t})-\mathrm{ch}(\mathrm{t})\}=a \mathrm{~L}\{f(\mathrm{t})\}+\mathrm{bL}\{\mathrm{g}(\mathrm{t})\}-\mathrm{cL}\{\mathrm{h}(\mathrm{t})\}$
By definition,
L.H.S $=\int_{0}^{\infty} e^{-s t}[a f(t)+b g(t)-c h(t)] d t$

$$
\begin{aligned}
& =a \int_{0}^{\infty} e^{-s t} f(t) d t+\int_{0}^{\infty} e^{-s t} g(t) d t-c \int_{0}^{\infty} e^{-s t} h(t) d t \\
& =a \mathrm{~L}\{f(\mathrm{t})\}+\mathrm{bL}\{\mathrm{~g}(\mathrm{t})\}-\mathrm{cL}\{\mathrm{~h}(\mathrm{t})\}
\end{aligned}
$$

II. FIRST SHIFTING PROPERTY :

If $\mathrm{L}\{f(\mathrm{t})\}=\bar{f}(s)$, then
$\mathrm{L}\left\{e^{a t} f(\mathrm{t})\right\}=\bar{f}(s-a)$
By definition,

$$
\begin{aligned}
& L\left\{e^{a t} f(t)\right\}=\int_{0}^{\infty} e^{-s t} e^{a t} f(t) d t=\int_{0}^{\infty} e^{-(s-a) t} f(t) d t \\
& =\int_{0}^{\infty} e^{-r t} f(t) d t, \text { where } \mathrm{r}=\mathrm{s}-a=\bar{f}(r)=\bar{f}(s-a) .
\end{aligned}
$$

APPLICATION OF FIRST SHIFTING PROPERTY :

(1) $\mathrm{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$
(2) $\mathrm{L}\left\{e^{a t} \mathrm{t}^{\mathrm{n}}\right\}=\frac{n!}{(s-a)^{n-1}}$ when $\mathrm{n}=1,2,3, \ldots \ldots \ldots$.
(3) $\mathrm{L}\left\{e^{a t} \sin \mathrm{bt}\right\}=\frac{b}{(s-a)^{2}+b^{2}}$
(4) $\mathrm{L}\left\{e^{a t} \cos \mathrm{bt}\right\}=\frac{s-a}{(s-a)^{2}-b^{2}}$
(5) $\mathrm{L}\left\{e^{a t} \sinh \mathrm{bt}\right\}=\frac{b}{(s-a)^{2}-b^{2}}$
(6) $\mathrm{L}\left\{e^{a t} \cosh \mathrm{bt}\right\}=\frac{s-a}{(s-a)^{2}-b^{2}}$ where in each case $>a$.

III. CHANGE OF SCALE PROPERTY :

If $\mathrm{L}\{f(\mathrm{t})\}=\bar{f}(s)$, then
$\mathrm{L}\{f(a t)\}=\frac{1}{a} \bar{f}\left(\frac{s}{a}\right)$.
By definition,

$$
\begin{aligned}
L\{f(a t)\}= & \int_{0}^{\infty} e^{-s t} f(a t) d t \\
& =\int_{0}^{\infty} e^{-s u / a} f(u) \frac{d u}{a} \quad \text { [put } a t=\mathrm{udt}=\frac{d u}{a} \\
& =\frac{-}{a} \int_{0}^{e^{-s u / a}} f(u)=\frac{1}{a} f\left(\frac{s}{a}\right) .
\end{aligned}
$$

Example - 3 :
Find the Laplace transform of $e^{2 t}\left(3 t^{5}-\cos 4 t\right)$.

Solution :

$$
\begin{aligned}
& \mathrm{L}\left\{e^{2 \mathrm{t}}\left(3 \mathrm{t}^{5}-\cos 4 \mathrm{t}\right)\right\} \\
& \qquad \begin{aligned}
=3 \mathrm{~L}\left\{e^{2 \mathrm{t}} \mathrm{t}^{5}\right\}-\mathrm{L} & \left\{e^{2 \mathrm{t}} \cos 4 \mathrm{t}\right\} \\
& =3 \cdot \frac{5!}{(s-2)^{6}}-\frac{s-2}{(s-2)^{2}+4^{2}}=\frac{360}{(s-2)^{6}}-\frac{s-2}{s^{2}-4 s+20}
\end{aligned}
\end{aligned}
$$

Example-4:

Find the laplace transform of $e^{-t} \sin ^{2} 3 \mathrm{t}$

Solution :

We have
$\left.\mathrm{L}\left\{\sin ^{2} 3 \mathrm{t}\right\}=\begin{array}{l}1 \\ 2 \\ \mathrm{~L}\{1-\cos 6 \mathrm{t}\}= \\ \begin{array}{l}1\lceil 1 \\ 2\end{array} \left\lvert\, \begin{array}{c}s \\ \hline\end{array}{ }^{2}{ }^{2}+6^{2}\right.\end{array}\right]^{\mid=s\left(s^{2}+36\right)}=\bar{f}(s)$

Example - 5 :

Find the laplace transform of $e^{-3 \mathrm{t}} \sin 5 \mathrm{t} \sin 3 \mathrm{t}$.

Solution :

We have, $\mathrm{L}\{\sin 5 \mathrm{t} \sin 3 \mathrm{t}\}=\frac{1}{2}$

$$
\mathrm{L}\{\cos 2 \mathrm{t}-\cos 8 \mathrm{t}\}
$$

$$
\left.=\frac{1}{2}\left\lceil\frac{s}{\left\lfloor s^{2}+2^{2}\right.}-\frac{s}{s^{2}+8^{2}}\right\rceil\right]=\frac{30 s}{\left(s^{2}+4\right)\left(s^{2}+64\right)}=f(s) .
$$

By first shifting property, we get

$$
\begin{aligned}
& \mathrm{L}\left\{e^{-3 \mathrm{t}} \sin 5 \mathrm{t} \sin 3 \mathrm{t}\right\}=\bar{f}(s+3 \\
& \qquad=\frac{30(s+3)}{\left\{(s+3)^{2}+4\right\}\left\{(s+3)^{2}+64\right\}}=\frac{30(s+3)}{\left\{s^{2}+6 s+13\right\}\left\{s^{2}+6 s+73\right\}}
\end{aligned}
$$

Example-6:

Find the laplace transform of $e^{-2 t}(2 \sqrt{t}-3 / \sqrt{t})$

Solution :

We have

$$
\begin{aligned}
& =\frac{\left.2 \Gamma\left(\left.\right|_{-} ^{1}\right)\right)}{2 s^{\frac{3}{2}}}-3 \cdot \frac{\left.\Gamma \left\lvert\, \frac{(1)}{s^{2}}\right.\right)}{s^{\frac{1}{2}}}=\frac{\sqrt{\pi}_{\frac{3}{2}}^{s^{2}}}{}-3 \frac{s^{2}}{\sqrt{s}}=f(s) .
\end{aligned}
$$

By first shifting property, we get

$$
\begin{aligned}
L\left\{e^{-2 t}(2 \sqrt{t}-3 / \sqrt{t})=\right. & \bar{f}(s+2) \\
& =\frac{\sqrt{\pi}}{(s+2)^{\frac{3}{2}}}-\frac{3 \sqrt{\pi}}{\sqrt{s+2}}=\frac{\sqrt{\pi}}{(s+2) \sqrt{s+2}}-\frac{3 \sqrt{\pi}}{\sqrt{s+2}}
\end{aligned}
$$

Example - 7 :

Find $L\left\{\frac{\sin a t)}{t}\right\}$, given that $L\left\{\begin{array}{l}\left\{\begin{array}{l}\sin t \\ t \\ \}\end{array}\right. \\ \}\end{array}=\tan ^{-1}(1)\right.$

Solution :

Given that, $\left.\left.\left.\quad L_{\{ }^{(\sin a t}\right\}=\operatorname{L}\right\} f(\mathrm{t})\right\}=\begin{gathered}\tan ^{-1}(1) \\ |-| f(s) \\ (s)\end{gathered}$

$\mathrm{L}\{f(a t)\}=\left\{\begin{array}{lllll} & \\ \text { at }\end{array}\right\} \bar{a}(a) \begin{array}{lll}\bar{a} & (s / a) & a\end{array}(s)$
$\left.\therefore \frac{d}{L} \frac{\left\{\left\{\sin _{t} a t\right\}^{\}}\right.}{l}={ }^{d}{ }^{d} \tan ^{-1} \gamma_{G}\right\}$
Therefore, $L\{\sin a t\}=\tan ^{-1}(a)$

$$
\left.l^{+}\right) \quad(s)
$$

LAPLACE TRANSFORMS OF DERIVATIVES :

(1) $f^{\prime}(\mathrm{t})$ be continuous and $\mathrm{L}\{f(\mathrm{t})\}=\bar{f}(s)$, then $\left.\mathrm{L}\left\{f^{\prime}(\mathrm{t})\right)\right\}=s \bar{f}(s)-f(0)$.

Proof: We have

$$
\begin{aligned}
L\left\{f^{\prime}(t)\right\} & =\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t \\
& =\left|e^{-s t} f(t)\right|^{\infty}-\int_{0}^{\infty}(-s) e^{-s t} \cdot f(t) d t
\end{aligned}
$$

Now assuming $\mathrm{f}(\mathrm{t})$ be such that lime $\mathrm{t}_{\mathrm{t} \rightarrow \infty} \mathrm{e}^{-\mathrm{st}} f(\mathrm{t})=0$, we have

$$
L\left\{f^{\prime}(t)\right\}=-f(0)+s \int_{0}^{\infty} e^{-s t} f(t) d t
$$

Thus, $L\left\{f^{\prime}(t)\right\}=s \bar{f}-f(0)$
(2) If $f^{\prime}(\mathrm{t})$ and its first $(\mathrm{n}-1)$ derivatives be continuous, then
$L\left\{f^{n}(t)\right\}=s^{n} \bar{f}(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\ldots \ldots . .-f^{n-1}(0)$
Thus,

$$
\begin{aligned}
& L\left\{f^{\prime \prime}(t)\right\}=s^{2} \bar{f}(s)-s f(0)-f^{\prime}(0) \\
& L\left\{f^{\prime \prime \prime}(t)\right\}=s^{3} \bar{f}(s)-s^{2} f(0)-s f^{\prime}(0)-f^{\prime \prime}(0) \\
& L\left\{f^{i v}(t)\right\}=s^{4} \bar{f}(s)-s^{3} f(0)-s^{2} f^{\prime}(0)-s f^{\prime \prime}(0)-f^{\prime \prime \prime}(0)
\end{aligned}
$$

and so on.

Laplace transforms of integrals :

$$
\text { If } L\{f(t)\}=\bar{f}(s) \text {, then } L\left\{\int_{0}^{t} f(u) d u\right\}_{j}=\frac{1}{\bar{\phi}} \bar{f}(s)
$$

Proof:
Let $\phi(t)=\int_{0}^{t} f(u) d u$, then $\phi^{\prime}(t)=f(t)$ and $\phi(0)=0$
$\backslash \mathrm{L}\left\{\phi^{\prime}(\mathrm{t})\right\}=s \bar{\phi}(\mathrm{~s})-\phi(0)$
or $\mathrm{L}\{f(\mathrm{t})\}=s \bar{\phi}(s)$
or $\quad \bar{f}(s)=s \bar{\phi}(s)$
or $\quad \phi(s)=\frac{1}{s} f(s)$
Hence, $L\left\{\int_{0}^{t} f(u) d u\right\}_{s}{ }^{1} f(s)$.

Multiplication By \mathbf{t}^{n} :

If $\mathrm{L}\{f(\mathrm{t})\}=\bar{f}(s)$, then
$\mathrm{L}\left\{\mathrm{t}^{\mathrm{n}} f(\mathrm{t})\right\}=(-1)^{\mathrm{n}} \frac{s^{n}}{d s^{n}}\lfloor\bar{f}(s)]$, where $\mathrm{n}=1,2,3 \ldots \ldots \ldots .$.

Division By t :

If $\quad \mathrm{L}\{f(\mathrm{t})\}=\overline{f(}(\mathrm{s})$, then
$L^{1} f(t)=$
$\left\{\begin{array}{l}-\infty \\ t\end{array}\right\} \int_{s}(s) d s$, provided the integral exists.

Example - 8 :

Find the laplace transforms of
(1) $t \sin a t$
(2) $t \cos a t$

Solution :

(1) We have, $L\{\sin a t\}=\frac{a}{s^{2}+a^{2}}$
$\backslash \mathrm{L}\{\mathrm{t} \sin a t\}=-\frac{d}{d s}\left(\frac{a}{s^{2}+2}\right)=-\left\lceil\frac{-2 a s}{2} \begin{array}{ll}2 & 2\end{array}\right]$
Hence $\{\mathrm{t} \sin a t\}=\frac{2 a s}{\left(s^{2}+a^{2}\right)^{2}}$
(2) We have, $\mathrm{L}\{\cos a t\}=\frac{s}{s^{2}+a^{2}}$
$\left.\therefore L\{t \cos a t\}=-\frac{d}{d s} \frac{\left({ }_{2}^{s+a} s_{2}\right)=-\left\lceil s^{2}+a^{2}-2 s^{2}\right\rceil}{s+a}\left(s^{2}+a^{2}\right)^{2} \right\rvert\,$
Hence, $\mathrm{L}\{\mathrm{t} \cos a t\}=\frac{s^{2}-a^{2}}{\left(s^{2}+a^{2}\right)^{2}}$

Example - 9 :

Find the laplace transforms of $\mathrm{t}^{2} \cos$ at.

Solution :

We have, $\mathrm{L}\{\cos a t\}=\frac{s}{s^{2}+a^{2}}$

$$
\therefore L\left\{t{ }^{2} \cos a t\right\}=(-1) \frac{2 d^{2}\left\lceil\frac{s}{d s^{2}}\left\lfloor| | \frac{s^{2}+a^{2}}{}\right\rfloor\right.}{}
$$

$$
\begin{aligned}
& =\frac{d}{d s}\left\lfloor\frac{a^{2}-s^{2}}{\left(s^{2}+a^{2}\right)^{2}}\right\rfloor \\
& =\frac{-2 s\left(s^{2}+a^{2}\right)^{2}-2\left(a^{2}-s^{2}\right) \cdot 2 s\left(s^{2}+a^{2}\right)}{\left(s^{2}+a^{2}\right)^{4}} \\
& =\frac{-2 s\left(s^{2}+a^{2}\right)+4 s\left(s^{2}-a^{2}\right)}{\left(s^{2}+a^{2}\right)^{3}}=\frac{2 s\left(s^{2}-3 a^{2}\right)}{\left(s^{2}+a^{2}\right)^{3}}
\end{aligned}
$$

Example - 10 :

Find the laplace transforms of $\frac{\left(e^{-a t}-e^{-b t}\right)}{t}$.

Solution :

$$
\begin{aligned}
& \text { We have, } \mathrm{L}\left\{e^{-a t}-e^{-b t}\right\}=\frac{1}{(s+a)}-\frac{1}{(s+b)} \\
& \left.\left\{\left(e^{-a t}-e^{-b t}\right)\right\}\right\}\left\{\left\lceil\left[\begin{array}{ll}
1 & -1
\end{array}\right\rceil\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& =[\log (s+a)-\log (s+b)]_{s}^{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& =\log 1-\log \left(\frac{s+a}{s+}\right) \\
& =-\log \left\lvert\, \frac{(s+a)}{(s+)}=\log (\underline{s+b)}\right.
\end{aligned}
$$

Example-11 :

Find the inverse Laplace transform of $\left.\left\lvert\, \frac{\left(e^{a t}-\cos b t\right.}{t}\right.\right)$

Solution :

$$
\begin{aligned}
& \left.\left.={ }_{[} \log (s-a)-\frac{1}{2} \log \left(s^{2}+b^{2}\right)\right\rfloor_{s}\right]^{\infty} \\
& =\frac{1}{2}\left[2 \log (s-a)-\log \left(s^{2}+b^{2}\right)\right]_{\rfloor}^{\infty} \\
& 1(s-a) 7^{\infty} \\
& \left.=\frac{-}{2} \log \left(\frac{}{s^{2}+b^{2}}\right)\right\rfloor_{s} \\
& { }_{1}\left\lceil\quad\left((s-a)^{2}\right)\right\rceil \\
& =z\left\lfloor\log 1-\log \left|\left(s^{2}+b^{2}\right)\right| \mid\right. \\
& =-1 \quad\left((s-a)^{2}\right) \\
& z^{\log }\left(\overline{s^{2}+b^{2}}\right) \\
& =\frac{1}{2} \log \left[\begin{array}{l}
s^{2}+b_{2}^{2} \\
{\left[\begin{array}{l}
(s+b)
\end{array}\right] .}
\end{array} .\right.
\end{aligned}
$$

INVERSE LAPLACE TRANSFORMS :

We know that if $\{f(\mathrm{t})\}=\bar{f}(\mathrm{~s})$, then $\mathrm{L}^{-1}\{\bar{f}(\mathrm{~s})\}=f(\mathrm{t})$
Let us now determine the inverse Laplace transforms of some given function of s.
(1)

$$
L^{-1}\left\{\begin{array}{l}
1 \\
{[f]}
\end{array}\right\}=1
$$

(2) $\quad L^{-1}\left\{\frac{1}{S-a}\right\}=e^{a t}$
(3) $L^{-1}\left\{\begin{array}{c}1 \\ s^{n}\end{array}\right\}=\underset{(n-1)!}{t^{n-1}}, n=1,2,3, \ldots \ldots \ldots . . .$.
(4)
(5)
(6)
(7)

$$
{ }^{L-1}\left\{\begin{array}{c}
1 \\
(s-a)^{n}
\end{array}\right\}=\left(\begin{array}{c}
e_{n}^{a t} \underline{t}^{n-1}
\end{array}, n=1,2,3, \ldots \ldots \ldots \ldots\right.
$$

$$
\begin{align*}
& L^{-1} \int_{\left.\frac{s^{2}+a^{2}}{s^{2}}\right\}^{2}}={ }^{-}-{ }^{-} \sinh a t \tag{6}
\end{align*}
$$

$$
\begin{align*}
& \begin{array}{l}
L^{-1}\left\{\begin{array}{c}
s \\
\left\{\overline{s^{2}-a^{2}}\right\} \\
1
\end{array}\right\}=\cosh a t \\
=e^{a t} \sin b t
\end{array} \tag{8}\\
& L^{1}\left\{\overline{(s-a)^{2}+b^{2}} \bar{b}\right. \tag{9}\\
& L^{-1}\left\{\frac{s-a}{(s-a)^{2}+b^{2}}\right\}=e^{a t} \cos b t \tag{10}\\
& L^{-1}\left\{\frac{s}{\left(s^{2}+a^{2}\right)^{2}}\right\}=\frac{1 t \sin a t}{2 a} \tag{11}\\
& -\uparrow 1=1 \quad(\sin a t-a t \cos a t) \\
& L^{1} \overline{\left.q_{\left(s^{2}+a^{2}\right)^{2}}\right\}} \overline{2 a^{3}} \tag{12}
\end{align*}
$$

INVERSE LAPLACE TRANSFORMS BY THE METHOD OF PARTIAL FRACTIONS :

We have seen that $\mathrm{L}\{f(\mathrm{t})\}$ in many cases, is a rational algebraic function of s . Hence to find the inverse laplace transforms of $f(s)$, we first express the given function of s into partial fractions which will, then, be recognizable as one of the above mentioned standard forms.
Example - 12:
Find the inverse laplace transform of $\frac{s^{2}+s+2}{(s+1)^{2}(s-3)}$.

Solution :

Suppose that,

$$
\begin{equation*}
\frac{s^{2}+s+2}{(s+1)^{2}(s-3)}=\frac{A}{(s+1)}+\frac{B}{(s+1)^{2}}+\frac{C}{(s-3)} . \tag{1}
\end{equation*}
$$

Multiplying both sides of (1) by $(s+1)^{2}(s-3)$, we get
$\mathrm{s}^{2}+\mathrm{s}+2=\mathrm{A}(\mathrm{s}+1)(\mathrm{s}-3)+\mathrm{B}(\mathrm{s}-3)+\mathrm{C}(\mathrm{s}+1)^{2}$.
Putting $\mathrm{s}=-1$

$$
2=-4 B \rightarrow B=-\frac{1}{2}
$$

Putting $\mathrm{s}=3$

$$
14=16 \mathrm{C} \rightarrow \mathrm{C}=\frac{7}{8}
$$

Equating co-efficient of s^{2}, we get

$$
1=\mathrm{A}+\mathrm{C} \rightarrow \mathrm{~A}=1-\mathrm{C} \rightarrow \mathrm{~A}=\frac{-}{8}
$$

Putting the values of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ in (1) we get

$$
\begin{aligned}
& \frac{s^{2}+s+2}{(s+1)^{2}(s-3)}=\frac{1}{8} \cdot \frac{1}{(s+1)}-\frac{1}{2} \cdot \frac{1}{(s+1)^{2}}+\frac{7}{8} \cdot \frac{1}{(s-3)} \\
& \therefore L\left\{\begin{array}{l}
s^{-1}\left\{\frac{s^{2}+s+2}{(s+1)^{2}(s-3)}\right\} \\
\quad={ }_{8}^{1} L^{-1}\left\{\begin{array}{c}
1 \\
(s+1)
\end{array}\right\}-\frac{1}{z^{-1}}\left\{\begin{array}{c}
1 \\
(s+1)^{2}
\end{array}\right\}+{ }_{8}^{7} L^{-1}\left\{\begin{array}{c}
1 \\
(s-3)
\end{array}\right\} \\
\quad=\frac{1}{8} e^{-t}-\frac{1}{2} e^{-t} \cdot t+\frac{7}{8} e^{3 t}
\end{array}\right.
\end{aligned}
$$

Example-13 :

Find the inverse laplace transforms of $\frac{s}{(s-2)\left(s^{2}+9\right)}$

Solution :

Suppose that,

$$
\begin{equation*}
\frac{s}{(s-2)\left(s^{2}+9\right)}=\frac{A}{s-2}+\frac{B s+C}{s^{2}+9} \tag{1}
\end{equation*}
$$

Multiplying both sides by $(s-2)\left(s^{2}+9\right)$, we get

$$
\mathrm{S}=\mathrm{A}\left(\mathrm{~s}^{2}+9\right)+(\mathrm{Bs}+\mathrm{C})(\mathrm{s}-2)
$$

Putting $\mathrm{s}=2,2=13 \mathrm{~A} \rightarrow \mathrm{~A}=\frac{2}{13}$
Putting $\mathrm{s}=0,0=9 \mathrm{~A}-2 \mathrm{c} \rightarrow \mathrm{C}=\frac{9}{13}$
Equating co-efficient of s^{2}, we get

$$
0=\mathrm{A}+\mathrm{B} \rightarrow \mathrm{~B}=-\frac{2}{13}
$$

Putting the values of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ in (1), we get

$$
\begin{aligned}
& \frac{s}{(s-2)\left(s^{2}+9\right)}=\frac{2}{13} \cdot \frac{1}{s-2}-\frac{2}{13} \cdot \frac{s}{\left(s^{2}+9\right)}+\frac{9}{13} \cdot \frac{1}{\left(s^{2}+9\right)} \\
& \therefore L^{-1}\left\{\frac{s}{(s-2)\left(s^{2}+9\right)}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2}{13} e^{2 t}-\frac{2}{13} \cos 3 t+\frac{3}{13} \sin 3 t \text {. }
\end{aligned}
$$

OTHER METHODS OF FINDING INVERSE LAPLACE TRANSFORMS :
(I) SHIFTING PROPERTY:

If $\mathrm{L}^{-1}\{\bar{f}(x)\}=f(\mathrm{t})$, then
$\mathrm{L}^{-1}\{\bar{f}(\mathrm{~s}-a)\}=e^{a \mathrm{t}} f(\mathrm{t})=e^{a \mathrm{t}} \mathrm{L}^{-1}\{\bar{f}(\mathrm{~s})\}$
(II) If $\mathrm{L}^{-1}\{\bar{f}(\mathrm{~s})\}=f(\mathrm{t})$ and $f(0)=0$, then $\mathrm{L}-1\{\mathrm{~s} . \bar{f}(\mathrm{~s})\}=\frac{d}{d t} f(t)$.

In general, $\mathrm{L}-1\left\{\mathrm{~s}^{\mathrm{n}} f(\mathrm{~s})\right\}=\frac{d^{n}}{d t^{n}}\{f(\mathrm{t})\}$,
Provided $f(0)=f^{\prime}(0)=\ldots \ldots=f^{\mathrm{n}-1}(0)=0$.
(III) If $\mathrm{L}^{-1}\{f(\mathrm{~s})\}=f(\mathrm{t})$, then $\mathrm{L}^{-1}\left\{\begin{array}{l}\{(\mathrm{f}) \\ \mid \quad s\end{array}\right\}=\int_{0}^{t} f(t) d t$
(IV) $\operatorname{IfL}^{-1}\{f(\mathrm{~s})\}=f(\mathrm{t})$, then $\mathrm{t} . f(\mathrm{t})=\mathrm{L}^{-1}\left\{\begin{array}{c}-\frac{d}{d s}\{f(s)\}\end{array}\right\}$
(V) If $f(\mathrm{t})=\mathrm{L}^{-1}\{f(\mathrm{~s})\}$, then $\mathrm{L}\left\{\begin{array}{c}\left\{\frac{f(t)}{t}\right\} \\ t\end{array}\right\} \int_{s}^{\infty} f(s) d s$.

This formula is useful in finding $f(\mathrm{t})$ when $\bar{f}(\mathrm{~s})$ is given.

Example-14 :

Find the inverse Laplace transform of $\tan ^{-1}\binom{(2}{\bar{s}}$.

Solution :

Let $\mathrm{L}^{-1}\left\{\tan ^{-1}\binom{2}{\frac{2}{s}}\right\}=f()$

$$
\left.\rightarrow \quad \mathrm{L}\{f(\mathrm{t})\}=\tan ^{-1}\left(\frac{2}{s}\right) \right\rvert\,=\bar{f}(s)
$$

Then by formula IV_{d} we get

$$
\begin{aligned}
& =-\left\lceil\left\lvert\, \begin{array}{c}
1 \\
1+(2 / s)^{2}
\end{array}\right.\right] \cdot\left[\begin{array}{l}
-2 \\
s^{2}
\end{array}\right] \\
& =\frac{2}{s^{2}+4}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\rightarrow \mathrm{t} f(\mathrm{t})=\mathrm{L}^{-1}\left\{\frac{2}{\{ }\right\}_{s^{2}+4}\right\}=\sin 2 t \\
& \rightarrow f(\mathrm{t})=\frac{\sin 2 t}{t} \\
& \left.\left.{ }_{-1}\left\{\left.\begin{array}{c}
t \\
-1 \\
-1
\end{array} \right\rvert\, 2\right) \right\rvert\,\right\} \quad \sin 2 t \\
& 1 \mathrm{~L}(\tan (于))={ }_{t} .
\end{aligned}
$$

Example－ 16 ：

Find the inverse Laplace transform of $\log \left(\begin{array}{c}s \\ \left(\frac{s+1}{}\right)\end{array}\right.$ ．

Solution ：

$$
\begin{aligned}
& \operatorname{Let}^{-1}\left\{\left.\left\{\log \left\lvert\,\left(\frac{s}{s+1}\right)\right.\right\} \right\rvert\,=f(t)\right. \\
& \rightarrow \mathrm{L}\{f(\mathrm{t})\}=\log \left(\frac{s)}{\left(\frac{s+1}{s}\right)}=f_{-}(s)\right.
\end{aligned}
$$

Then by formula IV we get，

$$
\begin{aligned}
& \mathrm{L}\{\mathrm{t} . f(\mathrm{t})\}=-\underline{d}\lceil\log (\underline{s})\rceil=-d / \log s-\log (s+1)\rceil \\
& d s\left\lfloor\downarrow s+1 \text { 夘 } d s s^{\lfloor }\right\rfloor \\
& =-\quad\left[\begin{array}{l}
\lceil 1 \\
\left.\left\lfloor-\frac{1}{s} \overline{s+1}\right\rfloor_{1}\right\rfloor_{1}=\frac{1}{s+1}-\frac{1}{s}+e^{-t}-1
\end{array}\right. \\
& \rightarrow \quad \mathrm{t} . f(\mathrm{t})=\mathrm{L}^{-1} \begin{cases}- & -\}\end{cases} \\
& \left\lfloor^{s+1} \quad s\right\rfloor \\
& \rightarrow f(\mathrm{t})=\frac{e^{-t}-1}{t} \\
& \backslash L^{-1}\{\log |(s)\rangle\}=\frac{\left(e^{-1}-1\right)}{t}
\end{aligned}
$$

Example－17 ：

Find the inverse Laplace transform of $\frac{1}{s^{2}\left(s^{2}+a^{2}\right)}$ ．

Solution ：

We have

$$
L^{-1}\left\{\frac{1}{\left(s^{2}+a^{2}\right)}\right\}=\frac{1}{a} \sin \mathrm{at}=f(\mathrm{t}) \text {. }
$$

Then by Formula III we get,

$$
L^{-1}\left\{\frac{1}{\left.s\left(s^{2}+a^{2}\right)\right\}}\right\}=\int_{-}^{1} \int_{0}^{t} \sin a t d t=-{\underset{2}{2}}_{a}^{a} \cos a t t_{t_{0}^{t}}^{\substack{1-\cos a t \\ 2}}
$$

$$
\begin{aligned}
& \text { Thus we have, } \\
& \begin{array}{l}
L^{-1}\left\{\frac{1}{s^{2}\left(s^{2}+a^{2}\right)}\right\}=\frac{1}{a^{2} \int_{0}^{t}}(1-\cos a t) d t \\
\\
\left.\left.\| \int \frac{1}{a^{2}} L^{t-\frac{1}{a}} \sin a t \right\rvert\,\right]_{0}^{t} \\
= \\
\left.\left.=\frac{1}{a^{2}} L^{t-\frac{1}{a}} \sin a t \right\rvert\,\right\rfloor_{0}^{t} \\
= \\
=\frac{1}{a^{3}}(a t-\sin a t) .
\end{array}
\end{aligned}
$$

Example-18 :

Find the inverse Laplace transform of $\frac{1}{s^{2}(s+5)}$.

Solution :

We have, $\left.\sum_{\{\overline{s+5}\}}^{L^{-1}\{1}\right\}=e^{-5 t}=f(t)$.
Then by Formula III, we get

$$
\begin{aligned}
& \left.L^{-1}\{\underset{s(s+5)}{1}\}=\int_{5}^{1} \int_{0}^{1} \mathrm{~L}-e^{-s t}\right\rceil d t
\end{aligned}
$$

Thus we have,

$$
\begin{aligned}
& L^{-1}\left\{\frac{\text { have, }}{\left.\frac{s^{2}(s+5)}{\}}\right\}}\right\}=\int_{5}^{1} \int_{0}^{t}\left\lceil 1-e^{-s t}\right] d t
\end{aligned}
$$

$$
\begin{aligned}
= & 1\left\lceil t+{ }^{1} e^{-5 t}-1\right\rceil \\
& \frac{1}{5}\lfloor \\
5 & \overline{5}\rfloor \\
= & \frac{1}{25}\left[e^{-5 t}+5 t-1\right]
\end{aligned}
$$

Example-19 :

Find the inverse Laplace transform of $\frac{s^{2}}{\left(s^{2}+a^{2}\right)}$

Solution :

We have,

$$
L^{-1}\left\{\frac{s^{2}}{2}\right\}=\frac{1}{2 a} t \sin a t=f(t)
$$

Since $f(0)=0$, we get from Formula If that,

$$
\begin{aligned}
& L^{L^{-1}} \frac{s^{2} s^{2} 2_{2}}{(+a}=\left.L^{-1}\right|_{s . c} ^{2} s_{2}=d\lceil f(t)\rceil \\
& \\
& =\frac{\left.(s+a)_{2}\right\}}{d t}\left\lfloor\frac{d}{2 a} t \sin a t\right\rfloor \\
& =\frac{1}{2 a}(\sin a \mathrm{t}+a \mathrm{t} \cos a \mathrm{t}) .
\end{aligned}
$$

Example - 20 :

Find the inverse Laplace transform of $\frac{s+3}{\left(s^{2}+6 s+13\right)^{2}}$.

Solution :

We have, $\left.\left(s^{2}+6+3+13\right)^{2}=\left\{\left(s^{2}+6 s+9\right)+4\right\rceil^{2}=\frac{s+3}{\left\lceil(s+3)^{2}+4\right\rceil}\right\rfloor^{2}$.
Then by formula I we get

$$
\begin{aligned}
& L^{-1}\left\{\frac{s+3}{2^{2}}\right\}=L^{-1}\left\{\left.\frac{s+3}{\left.\left.s^{2}+6 s+13\right)\right\}} \right\rvert\,\left\{\left((s+3)^{2}+2^{2}\right) \mid\right.\right. \\
& =\frac{1}{4} e^{-3 t} \cdot \mathrm{t} \sin 2 \mathrm{t} .
\end{aligned}
$$

Example - 21 :

Find the inverse Laplace transform of \qquad

Solution :

Then by formula V we get

$$
\left.=-\frac{1\lceil }{2} \left\lvert\, \frac{1}{1} \begin{array}{c}
\\
s+a
\end{array}\right.\right]_{s}^{\infty}
$$

$$
=-1
$$

1

$$
\underline{f(t)} \frac{1}{\frac{2}{2\left(s^{2}+a^{2}\right)}} \frac{1}{=} L^{-1}\{(2,2)\}=\frac{1}{2} \cdot \sin a t
$$

$$
t={ }_{2} L^{-1}\left\{\left(s^{2}+a^{2}\right)^{\}} \quad 2 a\right.
$$

Hence $f(\mathrm{t})=\left.L^{-1} \int_{2}^{| |}\right|_{2} ^{\mid} \mid=1$ tsin $a t$
$\left\lfloor\left(s^{2}+a^{2}\right)\right\rfloor 2 a$

LAPLACE TRANSFORM METHOD TO SOLVE LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS ASSOCIATED WITH INITIAL CONDITIONS :

Linear differential equations with constant coefficients associated with initial conditions can be easily solved by Laplace transform method.

Working Procedure :

Step-1: Take the Laplace transform of both sides of the differential equation and then put the given initial conditions.
Step-2: Transpose the terms with minus signs to the right.
Step-3: Divide by the co-efficient of \bar{y}, getting \bar{y} as a known function of s .
Step -5: Resolve this function of s into partial fractions.
Step-5: Take the inverse Laplace transform of both sides. This gives y as a function of t which is the desired solution satisfying the given conditions.

Example-22 :

Solve the following equation by transform method;
$\mathrm{y}^{\prime \prime}-3 \mathrm{y}^{\prime}+2 \mathrm{y}=e^{3 \mathrm{t}}$, when $\mathrm{y}(0)=1$ and $\mathrm{y}^{\prime}(0)=0$.

Solution :

We have, $\mathrm{y}^{\prime \prime}-3 \mathrm{y}^{\prime}+2 \mathrm{y}=e^{3 \mathrm{t}}$
Taking Laplace transform of both sides of (1), we get

$$
\begin{array}{ll}
& \mathrm{L}\left\{\mathrm{y}^{\prime \prime}\right\}=3 \mathrm{~L}\left\{\mathrm{y}^{\prime}\right\}+2 \mathrm{~L}\{\mathrm{y}\}=\mathrm{L}\left\{e^{3 \mathrm{t}}\right\} \tag{1}\\
\rightarrow \quad & {\left[\mathrm{s}^{2} y-\operatorname{sy}(0)-\mathrm{y}^{\prime}(0)\right]-3[\mathrm{~s} y-\mathrm{y}(0)]+2 y=\frac{1}{s-3}}
\end{array}
$$

Putting y $(0)=1$ and $y^{\prime}(0)=0$, we get

$$
\begin{align*}
& \mathrm{s}^{2} y-\mathrm{s}-3 \mathrm{~s} y+3+2 y=\frac{1}{s-3} \\
& \rightarrow \quad \bar{y} \cdot(\mathrm{~s} 2-3 \mathrm{~s}+2)=\quad+\mathrm{s}-3=\frac{1+(s-3)^{2}}{s-3} \\
& \rightarrow \bar{y}=\frac{s^{2}-6 s+10}{(s-3)\left(s^{2}-3 s+2\right)} \\
& \rightarrow \bar{y}=\frac{s^{2}-6 s+10}{(s-3)(s-1)(s-2)} \tag{2}\\
& \text { Let, } \frac{s^{2}-6 s+10}{(s-3)(s-1)(s-2)}=\frac{A}{s-3}+\frac{B}{s-1}+\frac{C}{s-2}
\end{align*}
$$

Multiplying both sides of (3) by $(\mathrm{s}-3)(\mathrm{s}-1)(\mathrm{s}-2)$, we get
$s^{2}-6 s+10=A(s-1)(s-2)+B(s-3)(s-2)+C(s-3)(s-1)$
Putting $\mathrm{s}=1, \mathrm{~B}=\frac{5}{2}$
Putting $\mathrm{s}=2, \mathrm{C}=-2$
Putting $\mathrm{s}=3, \mathrm{~A}=\frac{1}{2}$
Substituting the values of $\mathrm{A}, \mathrm{B}, \mathrm{C}$ in (3), we get

$$
y=\frac{1}{2} \cdot \frac{1}{(s-3)}+\frac{5}{2} \cdot \frac{1}{(s-1)}-2 \cdot \frac{1}{(s-2)}
$$

Taking inverse Lapplace transform of both sides, we get

$\backslash y=\frac{1}{2} e^{3 t}+\frac{5}{2} e^{t}-2 e^{2 t}$
This is the required solution.

Example-23 :

Solve the following equation by transform method;
$\left(D^{2}+\omega^{2}\right) y=\cos \omega t, t>0$, given that $y=0$ and $D y=0$ at $t=0$

Solution :

We have
$\left(D^{2}+\omega^{2}\right) y=\cos \omega t$
i.e., $\mathrm{y}^{\prime \prime}+\omega^{2} \mathrm{y}=\cos \omega \mathrm{t}$, given $\mathrm{y}(0)=\mathrm{y}^{\prime}(0)=0$

Taking Laplace transform of both sides of (1), we get

$$
\begin{aligned}
& \mathrm{L}\left\{\mathrm{y}^{\prime \prime}\right\}+\omega^{2} \mathrm{~L}\{\mathrm{y}\}=\mathrm{L}\{\cos \omega \mathrm{t}\} \\
\rightarrow \quad & \mathrm{s}^{2} \bar{y}-\operatorname{sy}(0)-\mathrm{y}^{\prime}(0)+\omega 2 \bar{y}=\frac{s}{s^{2}+\omega^{2}}
\end{aligned}
$$

Putting $(0)=0$ and $y^{\prime}(0)=0$, we get

$$
\begin{align*}
& \bar{y} \cdot\left(\mathrm{~s}^{2}+\omega^{2}\right)=\frac{s}{s^{2}+\omega^{2}} \\
\rightarrow \quad & \bar{y}=\frac{s}{\left(s^{2}+\omega^{2}\right)^{2}} \tag{2}
\end{align*}
$$

Taking inverse Laplace transform, we get

$$
L^{-1}\{y\} L^{-1}=\frac{s}{\left(s^{2}+\omega^{2}\right)^{2}}
$$

\y $=\frac{1}{2 \omega} \cdot \mathrm{t} \sin \omega \mathrm{t}$
This is the required solution.

Assignment

1. Find, ther
(a) (J)
$\dot{J}_{0} \quad \mathrm{t}$
(b) $L\left(\int^{-t} \cos t d t\right)$ \dot{j}^{\prime}
2. Find the Laplace Transform of $f(t)$ in each of the fyllowiso
(a)
(a) $f(\mathrm{t})=(\quad 0 \leq \mathrm{t} \leq 2$ \mathbf{t}_{t}, when $\mathrm{t}>2$
3. Obtain the inverse Laplace transforms ofthe following functions
(a) $\mathrm{s}^{3} 28_{6}^{2} s^{2}$ 盘 $1 \mathrm{~s}^{5} 6$
(c) $\frac{\mathrm{s}}{\mathrm{s}^{2}+6 \mathrm{~s}+13}$
(b) $a\left(s^{2}-2 a^{2}\right)$
(d)

CHAPTER-4

FOURIER SERIES

Periodic Functions:

If the value of each ordinate $f(\mathrm{t})$ repeat it self at equal interval in the abscissa, then $\mathrm{f}(\mathrm{t})$ is said to be a periodic function.
If $f(\mathrm{t})=f(\mathrm{t}+\mathrm{T})=f(\mathrm{t}+2 \mathrm{~T})=$ \qquad then
T is called period of the function $f(\mathrm{t})$.
For example

$$
\sin x=\sin (x+2 \pi)=\sin (x+4 \pi)=\ldots \ldots
$$

So $\sin x$ is called a periodic function of period 2π

Founier Series :

A series of sines and cosines of an angle and its multiple of the form

$$
\begin{aligned}
& \frac{a_{0}}{\overline{2}}+a_{1} \cos x+a_{2} \cos 2 x+\ldots .+a_{n} \cos n x+\ldots \ldots \\
& \quad+b_{1} \sin x+b_{2} \sin 2 x+\ldots \ldots+b_{n} \sin n x+\ldots . . \\
& \quad=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\sum_{n}} b_{n} \sin n x
\end{aligned}
$$

is called a fouries series, there $a_{0}, a_{\mathrm{n}} \& \mathrm{~b}_{\mathrm{n}}$ are called fourier constants

Useful Integrals

The following integrals are usful in Fourier series :

1. $\int_{\alpha}^{\alpha+2 \pi} \sin n x d x=0$
2. $\int_{x}^{\alpha+2 \pi} \cos n x d x=0$
3. $\int_{\alpha}^{\alpha+2 \pi} \sin ^{2} n x d x=\pi$
4. $\int_{\alpha}^{\alpha+2 \pi} \cos ^{2} n x d x=\pi$
5. $\int_{\alpha}^{\alpha+2 \pi} \sin n x \cdot \sin m x d x=0$
6. $\int_{2}^{\alpha+2 \pi} \cos n x \cdot \cos m x d x=0$
7. $\int_{\alpha}^{\alpha+2 \pi} \sin n x \cdot \cos m x d x=0$
8. $\int_{\alpha}^{\alpha+2 \pi} \sin n x \cdot \cos n x d x=0$
9. $\int u v=u v_{1}-u^{\prime} v_{2}+u^{\prime \prime} v_{3}-\ldots \ldots \ldots .$.

$$
\text { where } v_{1}=\int v d x, v_{2}=\int v_{1} d x, v_{3}=\int v_{2} d x \quad u^{\prime}=\frac{d u}{d x}, u^{\prime \prime}=\frac{d^{2} u}{d x^{2}} \&
$$

10. $\sin n \pi=0 \& \cos n \pi=(-x)$ where $n \in I$

Let $f(x)$ be represented in the interval $(\alpha, \alpha+2 \pi)$ by fourier series

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{x_{1}=1}^{\infty} a \cos _{n} n x+\sum_{x_{1}=1} b \sin _{n} n x \tag{1}
\end{equation*}
$$

To find a_{0} :
Integrate both sides of equation (1) form $x=\alpha$ to $x=Z+2 \pi$. Then

$$
\begin{aligned}
\int_{\alpha}^{\alpha+2 \pi} f(x) d x=\frac{1}{2} a \int_{\alpha}^{\alpha+2 \pi} d x & +\int_{\alpha}^{\alpha+2 \pi}\left(\sum_{n=1}^{\infty} a_{n} \cos n x\right) d x+\int_{\alpha}^{\alpha+2 \pi}\left(\sum_{n=1}^{\infty} b_{n} \sin n x\right) d x \\
& =\frac{1}{2} a(\alpha+2 \pi-\alpha)+0+0=a{ }_{0}(
\end{aligned}
$$

Hence $a={ }^{1}{ }^{\alpha+2 \pi} f(x) d x$

$$
{ }_{0} \quad-\quad \int_{\alpha}
$$

To find $\boldsymbol{a}_{\mathrm{n}}$: Muliply $\cos n x a_{\mathrm{n}}$ both sides of equation (1) and integrate from $x=2$ to $x=2+$
2R, Then

$$
\begin{aligned}
& \left.+\int_{\alpha}^{\alpha+2 \pi} \sum_{n=1}^{\infty} \sum_{n}^{\infty} \operatorname{cin}_{n}^{\alpha} n x\right), \operatorname{con} n x d x=0+\pi a+0 \\
& a+{ }^{1}-\int_{a+2 \pi} f(x) \cos n x d x \\
& { }^{n} \frac{-}{\pi} \int_{\alpha}
\end{aligned}
$$

To find $\mathbf{b}_{\mathbf{n}}$: Multiply $\sin n x$ on both sides of equation (1) and intergrate from $x=\pi$ to $x=\pi+2 \pi$, then

$$
\begin{aligned}
& \int_{\alpha}^{\alpha+2 \pi} f(x) \sin n x d x=\frac{a_{0}}{2} \int_{2}^{2+\pi} \sin n x d x+ \\
& \quad \int_{\alpha}^{\alpha+2 \pi(}\left(\sum_{n=1}^{\infty} a_{n} \cos n x\right) \mid \sin n x d x+\int_{\alpha}^{\alpha+2 \pi(}\left(\sum_{n=1}^{\infty} b_{n} \sin n x\right) \sin n x d x=0+0+\pi \mathbf{b}_{\mathrm{n}}
\end{aligned}
$$

Hence $b={ }^{1} \int_{a+2 \pi} f(x) \sin n x d x$
${ }^{n} \frac{-}{\pi} \int_{\alpha}$
Making $_{2 \pi} \alpha=0$, the interval becomes $0<x<\pi$ and the formula (1) reduces to $\left.\begin{array}{l}a=\int_{0}=\int_{0}^{2 \pi} f(x) d x \\ \left.a=\int_{0}^{1} \int_{2 \pi}^{2 \pi} f(x) \cos n x d x \mid\right\}\end{array}\right\}$
${ }_{n} \int_{\pi} \int_{0} \mathrm{~J}$

$$
\begin{aligned}
& b={ }_{-}^{1} \int_{0}^{2 R} f(x) \sin n x d x \\
& \int_{0}
\end{aligned}
$$

Putting $\alpha=-\pi$, The interval becomes $-\pi<x<\pi$, the formula (I)
reduces to

$$
\begin{aligned}
& \left.\begin{array}{l}
a=\int_{0}^{1} \int_{-\pi}^{\pi} f(x) d x \\
a={ }^{\bar{\pi}}{ }^{\pi} f(x) \cos n x d x
\end{array} \right\rvert\, \\
& b^{n}=\int_{-\frac{\pi}{n}} f(x) \sin n x d x \|^{〔} \ldots \ldots \text {.... (iii) } \\
& { }^{n} \quad-\int_{-\pi} \quad \text { । }
\end{aligned}
$$

Euler's Formula :

The fourier series for the function $f(x)$ in the interval $\pi<\mathrm{x}<\pi+2 \pi$ is given by

$$
f(x)=\frac{-}{2}+\sum_{n=1} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x
$$

where $a={ }^{1}{ }^{\alpha+2 \pi} f(x) d x$

$$
\begin{aligned}
& { }^{0} \quad \bar{\pi} \int_{\alpha} \\
& a={ }^{1} \int_{\alpha+2 \pi} f(x) \cos n x d x \\
& b^{n}=\frac{-}{\pi} \int_{\alpha} \\
& b=-\int_{a}^{\alpha+2 \pi} f(x) \sin n x d x \\
& { }^{n} \quad-\quad \int_{\alpha}
\end{aligned}
$$

The value of $a_{0}, a_{\mathrm{n}} \& \mathrm{~b}_{\mathrm{n}}$ are known.
Euler's formula.

Example - 1 :

Given that $f(x)=x+x^{2}$ for $-\pi<x<\pi$, find the Fourier expansion of $f(x)$. Hence that $\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\ldots \ldots$.

Solution :

Let $x+x^{2}=\frac{a_{0}}{\overline{2}}+\underset{1}{a} \cos x+a \underset{2}{\cos 2 x+\ldots . .}$

$$
\begin{align*}
& +\mathrm{b}_{1} \sin x+\mathrm{b}_{2} \sin 2 x+ \tag{1}\\
& a_{0}=\frac{1}{1} \int_{\pi-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x+x^{2}\right) d x=\frac{1}{\pi\lfloor }\left[\frac{x^{2}}{2}+\frac{\left.x^{3}\right\rceil^{\pi}}{3}\right\rfloor_{-\pi} \\
& =\frac{1}{\pi}\left[\begin{array}{c}
\pi^{2} \\
2
\end{array}+\frac{\pi^{3}}{3}-\frac{\pi^{2}}{2}+\frac{\pi^{3}}{3}\right]=\frac{2 \pi^{2}}{3} \\
& a=1 \quad{ }^{\pi} f(x) \cos n x d x={ }^{1} \quad{ }^{\pi}\left(x+x^{2}\right) \cos n x d x \\
& \begin{array}{lll}
-\int_{-\pi} \\
1 \Gamma & \sin n x & \bar{\pi} \int_{-\pi} \\
(-\cos n x) & (-\sin n x)]^{\pi}
\end{array} \\
& =\frac{\mid\left(x+x^{2}\right)}{\pi L} x^{-(2 x+1) \frac{L}{x^{2}}}\left(-x^{3} \int_{\rfloor_{-\pi}}^{\mid}\right. \\
& =\frac{1}{\pi}\left\lceil\left[\left.(2 \pi+1) \frac{\cos n \pi}{x^{2}}-(-2 \pi+1) \frac{\cos (-n \pi)\rceil}{n^{2}} \right\rvert\,\right\rfloor\right. \\
& =\frac{1\lceil }{\pi\lfloor 4 \pi \cdot} \frac{\cos n \pi\rceil}{\left.x^{2} \mid\right\rfloor}=\frac{4 .(-1)^{x}}{x^{2}} \\
& b={ }^{1 \pi}\left(x+x^{2}\right) \sin n x d x \\
& { }^{n} \frac{-}{\pi} \int_{-\pi}
\end{align*}
$$

$$
\begin{aligned}
& =\frac{1}{\pi}\left\lceil\left[\left.(2 \pi+1) \frac{\cos n \pi}{x^{2}}-(-2 \pi+1) \frac{\cos (-n \pi)\rceil}{n^{2}} \right\rvert\,\right\rfloor\right. \\
& =\frac{1\lceil }{\pi\lfloor 4 \pi \cdot} \frac{\cos n \pi\rceil}{\left.x^{2} \mid\right\rfloor}=\frac{4 .(-1)^{x}}{x^{2}} \\
& b={ }^{1 \pi}\left(x+x^{2}\right) \sin n x d x \\
& { }^{n} \frac{-}{\pi} \int_{-\pi}
\end{aligned}
$$

Substituting the values of $a_{0}, a_{\mathrm{n}} \& \mathrm{~b}_{\mathrm{n}}$ is equation (1)

$$
\left.\begin{array}{rl}
2^{2}=\frac{\pi^{2}}{3}+4 & \left\lceil-\cos x+\frac{1}{2^{2}} \cos 2 x\right. \\
\frac{-1}{3} \cos 3 x+\ldots . \tag{2}\\
& { }^{-2}\left[-\sin x+\frac{1}{-1} \sin 2 \pi-1\right. \\
\left.\right|_{L} & \sin 3 x+\ldots . . \\
\hline
\end{array}\right]
$$

Put $x=\pi$ in equation (2)
$\pi+\pi^{2}=\frac{\pi^{2}}{3^{-}}+4\left[1+\frac{1}{2^{2}}+\frac{1}{3^{2^{2}}}+\frac{1}{4^{2}}+\cdots . ..\right]$
Put $x=-\pi$ in equation (2)

$$
-\pi+\pi^{2}=\frac{\pi^{2}}{3}+4\left\lfloor\begin{array}{c}
1 \tag{4}\\
\left\lfloor 1+\frac{2^{2}}{2^{2}}+\frac{1}{3^{2}}+\frac{4^{2}}{}+\ldots \ldots . . \mid\right\rfloor
\end{array}\right.
$$

Adding equation (3) \& (4)

$$
\begin{aligned}
& 2 \pi^{2}=\frac{2 \pi^{2}}{3}+8\left[1+\frac{1}{2^{2}}+\frac{1}{2}+\frac{1}{2}+\ldots \ldots . . \mid\right\rfloor \\
& \frac{4 \pi^{2}}{3}=8\left[\begin{array}{c}
1 \\
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{4^{2}}{}+\ldots \ldots . .
\end{array}\right] \\
& \begin{array}{llllll}
\pi^{2} & 1 & 1 & 1 & \infty & 1
\end{array} \\
& \overline{6}=1+\overline{2^{2}}+\overline{3^{2}}+\frac{4^{2}}{}+\ldots \ldots . .=\sum_{n=1} \overline{x^{2}}
\end{aligned}
$$

Dirchelet's Condition :

$$
a_{0}+{ }^{\infty} a \cos n x+{ }^{\infty} b \sin n x
$$

Any function $f(x)$ can be developed as a fourier series $\overline{2} \sum_{n=1}{ }_{n} \quad \sum_{n=1}{ }_{n}$
where $a_{0}, a_{\mathrm{n}}, \mathrm{b}_{\mathrm{n}}$ are constants provided.
(i) $f(x)$ is periodic, single valued and finite
(ii) $f(x)$ has a finite no.of discontinuities in any one period
(iii) $f(x)$ has at most a finite no.of maxima and minima.

Discontinuous Functions : At a point of discontinuty, Fourier series gives the value of $f(x)$ as the arithmetic mean of left and right limits.

At a point of discontinuty, $x=\mathrm{c}$

$$
f(x)=\frac{1}{2}[f(c-0)+f(c+0)]
$$

Example-2:

Find the fourier series expansion for

$$
f(x)=\left\{\begin{array}{lc}
-\pi, & -\pi<x<0 \\
x, & 0<x<\pi
\end{array}\right.
$$

$f(x)$, if
Deduce that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots=\frac{\pi^{2}}{8}$

Solution :

Let $f(x)=\frac{a_{0}}{z}+\sum_{x=1}^{\infty} a \underset{n}{\cos n x+}+\sum_{x=1}^{\infty} b \sin n x$.

$$
\begin{aligned}
& \text { then } \left.a=1 \Gamma_{0}^{0}(-\pi) d x+\int^{\pi} x d x\right\rceil \\
& { }_{0}=\frac{-}{\pi}\left[\int_{-\pi}^{0}(-\pi) d x+\int_{0}^{\pi} x d x\right\rceil \\
& =\frac{\pi_{L}}{} \left\lvert\,-\pi\{x\}_{-\pi}+\left\{\left.\frac{\pi}{2}{J_{0}}_{0} \right\rvert\,\right\rfloor \quad \pi\lfloor\mid-\pi+\overline{2}]=-\frac{-}{2}\right. \\
& \left.a_{n}=\frac{1}{\pi}\left|\int_{-\pi}^{0}(-\pi) \cos n x d x+\int_{0}^{\pi} x \cos n x d x\right|^{\rceil}\right\rfloor
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1\lceil 0}{\pi}\left\lfloor\left.\frac{1}{x^{2}} \cos n \pi-\frac{1\rceil}{n^{2}} \right\rvert\,\right\rfloor \frac{1}{\pi n^{2}}[\cos n \pi-1] \\
& a=\underline{-2}, a=0, a=\underline{-2}, a=0 \\
& \begin{array}{llllll}
1 & \pi .1^{2} & 2 & 3 & \pi .3^{2} & 4
\end{array} \\
& b_{n}=\frac{1\left\lceil_{\lfloor-\pi}^{0}\right.}{0} \int_{-\pi}(-\pi) \cdot \sin n x d x+\left.\int_{0}^{\pi} x \sin n x d x\right|^{\rceil} \\
& \left.={ }_{\boldsymbol{\pi}}^{1}\left\{\left\{\frac{\pi \cdot \cos n x)^{0}}{x}\right\}_{-\pi}+\left\{\frac{-x \cdot \cos n x}{x}+\frac{\sin n x}{x}\right)^{\pi}\right\} \right\rvert\, \\
& =\frac{1\lceil\pi}{-1}(1-\cos n \pi)-{ }_{\pi}^{\pi} \cos n \pi{ }^{\top}={ }^{1}(1-2 \cos n \pi) \\
& \therefore b=3, b={ }^{-1} \quad \begin{array}{c}
n \\
=1
\end{array}, b=-l^{\mid} x \\
& 1 \quad 2 \underset{2}{2} b_{3} \quad 4
\end{aligned}
$$

Substituting the values of a's and b's in equation (1), we get

$$
\begin{align*}
& \left.f(x)=\frac{-\pi}{4}-\frac{2\lceil\cos x+}{\pi}+\frac{\cos 3 x}{3^{2}}+\frac{\cos 5 x}{5^{2}}+\ldots .\right\rceil \\
& \quad+3 \sin x-\frac{\sin 2 x}{2}+3 \frac{\sin 3 x}{3}-\ldots \ldots \ldots . \tag{ii}
\end{align*}
$$

Putting $x=0$ in equation (ii)

$$
\begin{equation*}
f(0)=-\frac{\pi}{4}-\frac{-}{\pi}\left(1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots . . \infty\right) \tag{iii}
\end{equation*}
$$

Now $f(x)$ is discontinuous at $x=0$
But $f(0-0)=-\pi$ and $f(0+0)=0$
$\therefore f(0)=\frac{1}{2}[f(0-0)+f(0+0)]=\frac{-\pi}{2}$

From equation (iii)

$$
\begin{aligned}
& -\frac{\pi}{2}=\frac{-\pi}{4}-\frac{2\lceil }{\pi}\left\lfloor\overline{L_{1}^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots .{ }_{\square}\right. \\
& \text { or } \frac{\pi^{2}}{8}=\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots \ldots
\end{aligned}
$$

Even Function : A function $f(x)$ is said to be even (or symmetric) function if $f(-x)=f(x)$
Ex. (i) $x^{2}, x^{4}, x^{6}, \ldots \ldots .$. even powers. of x
(ii) $\cos x, \sec x$ etc.

The graph of such a function is symmetrical with respect to y-axis. Here y-axis is a mirror for the reflection of the curve

The area under such a curve from $-\pi$ to π is double the area from 0 to π.
$\therefore \int_{-\pi}^{\pi} f(x) d x=2 \int_{0}^{x} f(x) d x$
Odd function : A function $f(x)$ is called odd (skew symmetric) function if $f(-x)=-f(x)$
Ex. (i) $x^{3}, x^{5}, x^{7}, \ldots$. .odd powers if x
(ii) $\sin x, \operatorname{cose} x, \tan x$ etc

Here the area under the curve from $-\pi$ to π is zero
i.e., $\int_{-\pi}^{\pi} f(x) d x=0$

Expansion of an Even Function :

$$
\begin{aligned}
& a=1 \\
& 0=\frac{-}{\pi} \int_{-\pi}^{\pi} f(x) d x=2 \int_{0}^{\pi} f(x) d x \\
& a=\frac{1}{\pi} f(x) \cdot \cos n x d x={ }^{2} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
& { }_{n} \int_{0}^{\pi}
\end{aligned}
$$

As $f(x)$ and connx both are even, the product of $f(x) \cdot \operatorname{cosnx}$ is also even.

$$
b=\begin{aligned}
& 1 \\
& n \\
& \pi
\end{aligned} \int_{-\pi}^{\pi} f(x) \sin n x d x=0
$$

As $\sin n x$ is an odd function. The product of an even function with odd function is odd. therefor we need not calculate b_{n}.
The serives of an even function contain cosine terms only.

Expansion of an odd Function :

$$
\begin{aligned}
& a=1 \\
& 0 \quad-\quad \int_{-\pi}^{\pi} f(x) d x=0 \\
& a={ }_{-}^{1} f(x) \cdot \cos n x d x=0(\mathrm{Q} f(x) \cdot \operatorname{cosnx} \text { is odd function }) \\
& b^{n}=\frac{-}{\pi} \int_{\bar{\pi}^{\pi}}^{\pi} f(x) \cdot \sin n x d x={ }^{2} \\
& { }^{n} \quad-\int_{-\pi}^{\pi} \int_{0}^{\pi} f(x) \cdot \sin n x d x
\end{aligned}
$$

(Q $f(x) \cdot \sin n x$ is even function)
The series of an odd function contain sine terms only.

Example-3:

Obtain a founier expansion of for $f(x)=x^{3}$. in $-\pi<x<\pi$

Solution :

$$
\begin{aligned}
& f(x)=x^{3} \text { is an odd function. } \\
& \backslash a_{0}=0 \text { and } a_{\mathrm{n}}=0 \\
& b={ }^{2}{ }^{\pi} \phi(x) \cdot \sin n x d x={ }^{2}{ }^{\pi} x^{3} \cdot \sin n x d x \\
& { }_{x}-\int_{0} \quad \bar{\pi} \int_{0} \\
& \begin{array}{l}
=\left.\frac{2\lceil }{\pi}\right|^{3} \cdot \frac{-\cos n x}{x}-\left.3 x^{2} \cdot \frac{-\sin n x}{x^{2}} \cdot \frac{b x \cdot \cos n x-6}{x^{3}} \cdot \frac{\sin n x\rceil^{\pi}}{x^{4}}\right|_{0} \\
=2\left\lceil_{0}-\left.\left.x^{3} \cdot \frac{\cos n x+6 x \cdot \cos n x\rceil^{\pi}}{x}\right|_{0} ^{x^{3}}\right|_{0}\right.
\end{array} \\
& =\frac{2\left\lceil-\pi^{3} .\right.}{\pi}\left\lfloor\frac{\cos n \pi}{x}+6 \cdot \pi \cdot{ }^{\cos n \pi\rceil} x^{3}\right\rfloor
\end{aligned}
$$

$$
\begin{aligned}
& \left.=2 .(-1) \left\lvert\,{ }_{\lfloor }{ }^{\left\lceil-\pi^{2}\right.}+\begin{array}{c}
6 \\
x^{3}
\end{array}\right.\right] \\
& \left|x^{3}=2\right|_{L(1}^{[\mid}\left(\frac{-\pi^{2}}{1}+\frac{6}{\left.\overrightarrow{1^{3}}\right)}\right) \sin x+\left(\frac{-\pi^{2}}{2}+\frac{6}{2^{3}}\right) \sin 2 x-\left|\left(\overline{-\pi^{2}}+\frac{6}{3^{3}}\right)\right| \sin 3 x+\ldots . .
\end{aligned}
$$

Half Range Series :

To obtain a Fourier expansion of a function $f(x)$ for the range $(0, \pi)$ which is half the period of the fourier series. As it is immateriad what ever the function many be outside the range
$0<x<\pi$, we extend the function to cover the range $-\pi<x<\pi$. So that the new function may be even or odd. The fourier expansion of such function of half the period consists sine or cosire term only.

Sine Series :

If it is required to expand $f(x)$ as a sine aeries in $0<x<\pi$ me extend the function to the range $-\pi<x<\pi$, so that if will be an odd function.
The desired half-range sin series is given by

$$
\begin{gathered}
f(x)=\sum_{2^{n=1}}^{\infty} b_{n} \sin n x \\
\text { where } b= \\
n \quad \bar{\pi} \int_{0}^{\pi} f(x) \sin n x d x
\end{gathered}
$$

Cosine Series :

If its is required to expand $f(x)$ as a cosine series in $0<x<\pi$, We extend the function to the range $-\pi<x<\pi$, so that if will be an even function.
The desired half - range cosine series is given by

$$
f(x)=\frac{a_{0}}{2^{2}}+\sum_{n=1}^{\infty}{a_{n}}^{\infty} \cos n x
$$

where

$$
\begin{aligned}
& a=-\quad \int^{\pi} f(x) d x \\
& a=\frac{}{\pi} \int_{0}^{\pi} f(x) \cos n x d x \\
& \frac{\bar{\pi}}{} \int_{0}^{\pi} f
\end{aligned}
$$

Example-4:

Find the half - range sine series for the function $f(x)=e^{a x}$ for $0<x<\pi$

Solution :

$$
\begin{aligned}
& f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x \\
& \text { where } b={ }^{n=1}{ }^{2} f(x) \sin n x d x={ }^{2}{ }^{\pi} e^{a x} \sin n x d x \\
& { }_{n}-\frac{-}{\pi} \int_{0} \quad \bar{\pi} \int_{0}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2\lceil }{\pi}\left\lfloor\frac{e^{a x}}{a^{2}+n^{2}}(a \sin n x-n \cos n x)\right\rfloor_{0}^{\pi} \\
& =\frac{2\left\lceil\frac{e^{a \pi}}{\pi}\left\lfloor\left.\frac{n}{a^{2}+n^{2}}(a \sin n \pi-n \cos n \pi)+\frac{n}{a^{2}+n^{2}} \right\rvert\,\right\rfloor\right.}{\square} \\
& =\frac{2}{\pi} \cdot \frac{n}{a^{2}+n^{2}}\left\lfloor-(-1)^{n} e^{a \pi}+1\right\rceil \\
& =\frac{2 n}{\left(a^{2}+n^{2}\right) \pi}\left\lfloor\left[1-(-1)^{n} e^{a \pi}\right]\right. \\
& b_{1}=\frac{2\left(1+e^{a \pi}\right)}{\left(a^{2}+1\right) \pi}, b_{2}=\frac{2.2\left(1-e^{a \pi}\right)}{\left(a^{2}+2^{2}\right) \pi} \\
& e^{a x}=\frac{2}{\pi}\left[\frac{1+e^{a \pi}}{a^{2}+1^{2}} \sin x+\frac{2\left(1-e^{a \pi}\right)}{a^{-}}+\sin 2 x+\ldots \ldots .\right]
\end{aligned}
$$

1. Find a fourier series to represent $f(x)=\pi-x, 0<x<2 \pi$
2. Find a fourier series to represent the function

$$
f(x)=e^{x}, \text { for }-\pi<x<\pi
$$

3. Find the fourier series of the function $f(x)=\left\lvert\, \begin{array}{ll}-1, \text { for }-\pi<x<-\pi \\ 0, & \text { for }-{ }_{-}^{\pi}<x<\pi^{2}\end{array}\right.$

$$
\left.\right|_{+1,} \text { for } \frac{\pi^{2}}{2}<x<\pi
$$

4. Represent the following function by a fourier sine series $f(t)= \begin{cases}t, 0<t \leq \begin{array}{l}\pi \\ \pi\end{array} & \pi \\ \frac{2}{2} & \overline{2}\end{cases}$
5. Find the fourier cosine series for the function $f(x)=\left\{\begin{array}{cc}1, \text { for } 0<x<\pi \\ 2 & \pi \\ 0, & \text { for } \\ 2\end{array}\right.$

CHAPTER - 5

FINITE DIFFERENCE AND INTERPOLATION

Finite Difference :

Suppose we are given the following values of $\mathrm{y}=f(x)$ for a set of values $f x$:

$$
\begin{array}{llllll}
x & x_{0} & x_{1} & x_{2} & \ldots \ldots . . & x_{\mathrm{n}} \\
\mathrm{y} & \mathrm{y}_{0} & \mathrm{y}_{1} & \mathrm{y}_{2} & \ldots \ldots . . & \mathrm{y}_{\mathrm{n}}
\end{array}
$$

The interpolation is the technique of estimating the value of a function for any intermediate value of the independent variable. While the process of computing the value of the function outside the given range is calle extrapolation.

Suppose that the function $\mathrm{y}=f(x)$ is tabulated for the equally spaced values $x=x_{0}, x_{0}+\mathrm{h}$, $x_{0}+2 \mathrm{~h}, \quad x_{0}+$ nh giving $\mathrm{y}=\mathrm{y}_{0}, \mathrm{y}_{1} \ldots \quad \mathrm{y}_{\mathrm{n}}$. To determine the values of $f(x)$ for some intermediate values of x, the following two types of difference are found useful.
Forward difference - The differences

$$
\begin{array}{ll}
& \Delta \mathrm{y}_{0}=\mathrm{y}_{1}-\mathrm{y}_{0} \\
& \Delta \mathrm{y}_{1}=\mathrm{y}_{2}-\mathrm{y}_{1} \\
\text { Similarly } & \Delta \mathrm{y}_{\mathrm{n}-1}=\mathrm{y}_{\mathrm{n}}-\mathrm{y}_{\mathrm{n}-1} \\
& \Delta^{2} \mathrm{y}_{0}=\Delta \mathrm{y}_{1}-\Delta \mathrm{y}_{0} \\
& \Delta^{3} \mathrm{y}_{1}=\Delta^{2} \mathrm{y}_{1}-\Delta^{2} \mathrm{y}_{1} \\
& \Delta^{\mathrm{n}} \mathrm{y}_{0}=\Delta^{\mathrm{n}-1} \mathrm{y}_{1}-\Delta^{\mathrm{n}-1} \mathrm{y}_{0}
\end{array}
$$

Forward difference table

Value of x	Value of y	1st diff.	2nd diff.	3rd diff.	4th diff.	5th diff.
x_{0}	y_{0}	$\Delta \mathrm{y}_{0}$				
$x_{0}+\mathrm{h}$	y_{1}	$\Delta \mathrm{y}_{1}$	$\Delta^{2} \mathrm{y}_{0}$			
$x_{0}+2 \mathrm{~h}$	y_{2}	$\Delta \mathrm{y}_{2}$	$\Delta^{2} \mathrm{y}_{1}$	$\Delta^{3} \mathrm{y}_{0}$		
$x_{0}+3 \mathrm{~h}$	y_{3}	$\Delta \mathrm{y}_{3}$	$\Delta^{2} \mathrm{y}_{2}$	$\Delta^{3} \mathrm{y}_{1}$	$\Delta^{4} \mathrm{y}_{0}$	
$x_{0}+4 \mathrm{~h}$	y_{4}	$\Delta \mathrm{y}_{4}$	$\Delta^{2} \mathrm{y}_{3}$	$\Delta^{3} \mathrm{y}_{2}$	$\Delta^{4} \mathrm{y}_{1}$	$\Delta^{5} \mathrm{y}_{0}$
$x_{0}+5 \mathrm{~h}$	y_{5}					

Backward difference

$$
\begin{aligned}
& \nabla \mathrm{y}_{1}=\mathrm{y}_{1}-\mathrm{y}_{0} \\
& \nabla \mathrm{y}_{1}=\mathrm{y}_{1}-\mathrm{y}_{0} \\
& \vdots \\
& \vdots \\
& \nabla^{\mathrm{n} \mathrm{y}_{\mathrm{n}}}=\nabla^{\mathrm{n}-1} \mathrm{y}_{\mathrm{n}}-\nabla^{\mathrm{n}-1} \mathrm{y}_{\mathrm{n}-1}
\end{aligned}
$$

Backward difference table

Value of x	Value of y	1st diff.	2nd diff.	3rd diff.	4th diff.	5th diff.
x_{0}	y_{0}	$\Delta \mathrm{y}_{0}$				
$x_{0}+\mathrm{h}$	y_{1}	$\Delta \mathrm{y}_{1}$	$\Delta^{2} \mathrm{y}_{0}$			
$x_{0}+2 \mathrm{~h}$	y_{2}	$\Delta \mathrm{y}_{2}$	$\Delta^{2} \mathrm{y}_{1}$	$\Delta^{3} \mathrm{y}_{0}$		
$x_{0}+3 \mathrm{~h}$	y_{3}	$\Delta_{\mathrm{y}_{3}}$	$\Delta^{2} \mathrm{y}_{2}$	$\Delta^{3} \mathrm{y}_{1}$	$\Delta^{4} \mathrm{y}_{0}$	
$x_{0}+4 \mathrm{~h}$	y_{4}	$\Delta \mathrm{y}_{4}$	$\Delta^{2} \mathrm{y}_{3}$	$\Delta^{3} \mathrm{y}_{2}$	$\Delta^{4} \mathrm{y}_{1}$	$\Delta^{5} \mathrm{y}_{0}$
$x_{0}+5 \mathrm{~h}$	y_{5}					

Differences of a polynomial

We know that the expression of the form $f(x)=a \underset{0}{x^{\mathrm{n}}}+a \underset{2}{x^{\mathrm{n}-1}}+\ldots . .+a_{\mathrm{n}-1} x+a{ }_{\mathrm{n}}$ where a 's are constant $\left(a_{0} G 0\right)$ and n is a positive integer is called a polynomial in x of degree n .

Theorem :

The $1^{\text {st }}$ difference is a polynomial of degree n is of degree $n-1$, the $2^{\text {nd }}$ difference is of degree $\mathrm{n}-2$, and the nth difference is constant. While higher difference are equal to zero. The converse of the theorem is alos true which stated that if $n^{\text {th }}$ difference of a function tabulated at equally spaced intervals are constant, the function is a polynomial of degree n .

Example - 1 :

Form the successive forward differences of $a x^{3}$, the interval being h.

Solution :

Here $\mathrm{y}=f(x)=a x^{3}$
We know that

$$
\begin{aligned}
& \Delta \mathrm{y}_{0}=\mathrm{y}_{1}-\mathrm{y}_{0}=f(x+\mathrm{h})-f(x) \\
& \backslash \Delta\left(a x^{3}\right)=a(x-\mathrm{h})^{3}-a x^{3} \\
& =a\left(x^{3}+3 x^{2} \mathrm{~h}+3 \mathrm{gh}^{2}+\mathrm{h}^{3}\right)-a x^{3} \\
& =a\left(3 x^{2} \mathrm{~h}+3 x \mathrm{~h}^{2}+\mathrm{h}^{3}\right)
\end{aligned}
$$

Again, $\Delta^{2} \mathrm{y}_{0}=\Delta \mathrm{y}_{1}-\Delta \mathrm{y}_{0}$

$$
\begin{aligned}
& \backslash \Delta^{2}\left(a x^{3}\right)=a\left\{3(x+\mathrm{h})^{2} \mathrm{~h}+3(x+\mathrm{h}) \mathrm{h}^{2}+\mathrm{h}^{3}\right\}-a\left(3 x^{2} \mathrm{~h}+3 x \mathrm{~h}^{2}+\mathrm{h}^{3}\right) \\
& \quad=a\left\{3 x^{2} \mathrm{~h}+6 x \mathrm{~h}^{2}+3 \mathrm{~h}^{3}+3 x \mathrm{~h}^{2}+3 \mathrm{~h}^{3}+\mathrm{h}^{3}-3 x^{2} \mathrm{~h}-3 x \mathrm{~h}^{2}-\mathrm{h}^{3}\right\}=a\left\{6 x \mathrm{~h}^{2}+6 \mathrm{~h}^{3}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta^{3} \mathrm{y}_{0}=\Delta^{2} \mathrm{y}_{1}=\Delta^{2} \mathrm{y}_{0} \\
& \begin{array}{l}
\Delta^{\mathrm{S}}\left(a x^{3}\right)=a
\end{array} \quad\left\{6(x+\mathrm{h}) \mathrm{h}^{2}+6 \mathrm{~h}^{3}\right\}-a\left\{6 \mathrm{hh}^{2}+6 \mathrm{~h}^{3}\right\} \\
& \quad=a\left\{6 \mathrm{~h}^{2}+6 \mathrm{~h}^{3}+6 \mathrm{~h}^{3}-6 \mathrm{xh}^{2}-6 \mathrm{~h}^{3}\right\}=6 a \mathrm{~h}^{3}=\text { Constant }
\end{aligned}
$$

and $\Delta^{4} y=\Delta^{3} y_{\bar{T}}=\Delta^{3} y_{0}$
$\backslash \Delta^{4}\left(a x^{3}\right)=6 a h^{3}-6 a h^{3}=0$
Here it shows that the the third differences of a polynomial of third degree is constant \& the higher difference \& are zero.

Factorial Notation

A product of the form $x(x-1)(x-2) \ldots \ldots . . .(x-\mathrm{r}+1)$ is devoted by $[x]^{\mathrm{r}}$ and is called a factorial.
In particular

$$
\begin{aligned}
& {[x]=x,[x] 2=x(x-1)} \\
& {[x]^{3}=x(x-1)(x-2)} \\
& {[x]^{\mathrm{n}}=x(x-1)(x-2) \ldots \ldots .(x-\mathrm{n}+1)}
\end{aligned}
$$

which is called a factorial polynomial or function.
The factorial notation is of special utility in the theory of first differences. It helps in finding the successive differences of a polynomials directly bysimply rule of differentiation. The result of differentiating $[x]^{\mathrm{r}}$ is similar to that of differential x^{r}.

Example-2:

Estimate the missing term in the following table :

x	0	1	2	3	4
$f(x)$	1	3	9	8	1

Solution :

Let the missing term by y_{1}. The following is the difference table.

x	y	Δ	Δ^{2}	Δ^{3}	Δ^{4}
01					
1	3	2	4	$\mathrm{y}_{3}-19$	
2	9	6	$\mathrm{y}_{3}-15$		$124-4 \mathrm{y}_{3}$
3	y_{3}	$\mathrm{y}_{3}-9$	$81-2 \mathrm{y}_{3}+9$	$105-3 \mathrm{y}_{3}$	
4	81	$81-\mathrm{y}_{3}$			

As only four entries $y_{0}, y_{1}, y_{2}, y_{4}$ are given, the function y can be represented by a third degree polynomial, here $4^{\text {th }}$ order difference becomes zero, i.e.,

$$
\begin{aligned}
& 124-4 y_{3}=0 \\
\rightarrow \quad & y_{3}=31
\end{aligned}
$$

Hence the missing term is 31 .

Example-3:

Estimate the missing term in the following table :

x	0	1	2	3	4	5	6
y	5	11	22	40	--	140	--

Solution :

Let the missing term by $\mathrm{y}_{4} \& \mathrm{y}_{6}$. The following is the difference table.

$\boldsymbol{x} \boldsymbol{:}$	$\mathbf{y}:$	Δ	Δ^{2}	$\Delta^{\text {S }}$	Δ^{4}	Δ^{5}
0	5					

1	11	6	5			
2	22	11	7	2	$y_{4}-67$	
3	40	18	$y_{4}-40$	$y_{4}-58$	$303-4 y_{4}$	$370-5 y_{4}$
4	y_{4}	$y_{4}-40$	$180-3 y_{4}$	$238-3 y_{4}$	$y_{6}+6 y_{4}-$	$y_{6}+10 y_{4}-1001$
5	140	$140-y_{4}$	$y_{6}+y_{4}-$	$y_{6}+3 y_{4}-460$	698	

$$
\begin{array}{llll}
6 & y_{6} & y_{6}-140 & 280
\end{array}
$$

As only four entries $y_{0}, y_{1}, y_{2}, y_{4} y_{5}$ are given, the function y can be represented by $\mathrm{a} 4{ }^{\text {th }}$ degree polynomial \& hence $5^{\text {th }}$ difference becomes zero, i.e.,
$370-5 \mathrm{y}_{4}=0 \quad$ and $\quad \mathrm{y}_{6}+10 \mathrm{y}_{4}-1001=0$
Solving these, we get
$y_{4}=74 \quad$ and $\quad y_{6}=261$

Newton's Forward interpolation formula for equal intervals

Let the function $\mathrm{y}=f(x)$ takes the values $\mathrm{y}_{0}, \mathrm{y}_{1}, \mathrm{y}_{2} \ldots \ldots \ldots \ldots \ldots$ corresponding to the values $x_{0}, x_{1}+\mathrm{h}, x_{0}+2 \mathrm{~h}$ of x.

$$
f\left(x_{0}+n h\right)=y_{0}+n \Delta y_{0^{+}} \frac{n(n-1)}{2!} \Delta^{2} y_{0}+\frac{n(n-1)(n-2)}{3!} \Delta^{3} y_{0}+\ldots \ldots .
$$

Obs. This formula is used for interpolating the values of y near the beginning of a set of tabulated values and exterpolating values of y a little backward (i.e. to the left) of y_{0}.

Newton's backward interpolation formula for equal intervals

Let the function $\mathrm{y}=f(x)$ takes the values $\mathrm{y}_{0}, \mathrm{y}_{1}, \mathrm{y}_{2} \ldots \ldots \ldots \ldots .$. corresponding to the values $x_{0}, x_{1}+\mathrm{h}, x_{0}+2 \mathrm{~h}$ of x.

$$
f\left(x_{n}+n h\right)=y_{n}+n \nabla y_{n}+\frac{n(n+1)}{2!} \nabla^{2} y_{0}+\frac{n(n+1)(n+2)}{3!} \nabla^{3} y_{n}+\ldots \ldots
$$

Obs. This formula is used for interpolating the values of y near the beginning of a set of tabulated values and exterpolating values of y a little backward (i.e. to the right) of y_{n}.

Example-4:

The table gives the distances in nautical miles of the visible horizon for the given heights in feet above the earth's surface.

$x=$ height	100	150	200	250	300	350	400
$y=$ distance	10.63	13.03	15.04	16.81	18.42	19.90	21.27

Find the values of y when (i) $x=218 \mathrm{ft}$.
Solution :
The difference table is as under :

\boldsymbol{x}	y	Δ	Δ^{2}	$\Delta^{\text {S }}$	Δ^{4}
100	10.63				
		2.40			
150	13.03		- 0.39		
		2.01		0.15	
200	15.04		-0.24		- 0.07
		1.77		0.08	
250	16.81		- 0.16		- 0.05
		1.61		0.03	
300	18.42		- 0.13		- 0.01
		1.48		0.02	
350	19.90		- 0.11		
		1.37			
400	21.27				

(i) If we take $x_{0}=200$, then $\mathrm{y}_{0}=15.04, \Delta \mathrm{y}_{0}=1.77, \Delta^{2} \mathrm{y}_{0}=-0.16, \Delta^{\mathrm{S}} \mathrm{y}_{0}=0.03$ etc.

Since $\mathrm{x}=218$ and $\mathrm{h}=50, \therefore n=\frac{x-x_{0}}{h}=\frac{18}{50}=0.36$
\Using Newton's forward interpolation formula, we get
$y_{218}=y_{0}+n \Delta y_{0}+\frac{n(n-1)}{1.2} \Delta^{2} y_{0} \frac{n(n-1)(n-2)}{1.2 .3} \Delta^{3} y_{0}+\ldots .$.
$f(218)=15.04+0.36(1.77)+\frac{0.36+(-0.64)}{2}(-0.16)+\frac{0.36(-0.64)(-1.64)}{6}(0.03)+\ldots$.
(ii) Since $x=410$ is near the end of the table, we use Newton's backward interpolation formula.
\backslash taking $x_{n}=400, n=\frac{x-x_{n}}{h}=\frac{10}{50}=0.2$
Using the line of backward differences

$$
\mathrm{Y}_{\mathrm{n}}=21.27, \nabla^{2} \mathrm{y}_{\mathrm{n}}=-0.11, \nabla^{3} \mathrm{y}_{\mathrm{n}}=0.02 \text { etc. }
$$

\Newton's backward formula gives

$$
\begin{aligned}
& \mathrm{y}_{410}=\mathrm{y}_{400}+\mathrm{n} \nabla \mathrm{y}_{200}+\frac{n(n+1)}{2} \nabla^{2} y_{400}+\frac{n(n+1)(n+2)}{1.2 .3} \nabla^{3} y_{400}+\ldots \\
&=21.27+0.2(1.37)+\frac{0.2(1.2)}{2}(-0.11)+\ldots=21.53 \text { nautical miles. }
\end{aligned}
$$

Example - 5 :

Find the number of men getting wages between Rs. 10 and 15 from the following data :

Wages in Rs.	$0-10$	$10-20$	$20-30$	$30-40$
Frequency	9	30	35	42

Solution :

First we prepare the cumulative frequency table, as follows :

Wages less than (x)	10	20	30	40
No.of men (y)	9	39	74	116

Now the difference table is

x	y	Δ	Δ^{2}	Δ^{s}
$\boxed{10}$	$\boxed{9}$			
20	39		$\boxed{30}$	
30	74	35		$\boxed{2}$
40	116		7	

We shall find y_{15} i.e. number of men getting wages less than 15 .
Taking $x_{0}=10, x=15$, we have

$$
n=\frac{x-x_{0}}{h}=\frac{15-10}{10}=\frac{5}{10}=0.5
$$

\ using Newton's forward interpolation formula, we get

$$
\begin{aligned}
& y_{15}=y_{10}+n \Delta y_{10}+\frac{n(n-1)}{2!} \Delta^{2} y_{10}+\frac{n(n-1)(n-2)}{3!} \Delta^{3} y_{10} \\
&=9+(0.5) \times 30+\frac{(0.5)(0.5-1)}{2} \times 5+\frac{(0.5)(0.5-1)(0.5-2)}{6} \times 2 \\
&=9+15-0.625+0.125=23.5=24 \text { approx. }
\end{aligned}
$$

Number of men getting wages between Rs. 10 and $15=24-10=5$ approx.

Example - 6 :

Find the cubic polynomial which takes the following values:

x	0	1	2	3
$f(x)$	1	2	1	10

Solution :

The difference table is

x	$f(x)$	$\Delta f(x)$	$\Delta^{2} f(x)$	$\Delta^{3} f(x)$
0	1			
1	2	1	-2	12
2	1	-1	10	
3	10	9		
We take $x_{0}=0$ and $p=\frac{x-0}{h}=x$				

\backslash using Newton's forward interpolation formula, we get

$$
\begin{align*}
f(x) & =f(0)+\frac{x}{1} \Delta f(0)+\frac{x(x-1)}{1.2} \Delta^{2} f(0)+\frac{x(x-1)(x-2)}{1.2 .3} \Delta^{3} f(0) \\
& =1+x(1)+\frac{x(x-1)}{2}(-2)+\frac{x(x-1)(x-2)}{6}(12) \tag{12}\\
& =2 x^{3}+7 x^{2}+6 x+1, \text { which is the required polynomial. }
\end{align*}
$$

To compute $\mathrm{f}(4)$, we take $x_{\mathrm{n}}=3, x=4$ so that $p=\frac{x-x_{n}}{h}=1$
Using Newton's backward interpolation formula, we get

$$
\begin{aligned}
& f(4)=f(3)+\mathrm{n} \nabla f(3)+\frac{n(n+1)}{1.2} \nabla^{2} f(3)+\frac{n(n+1)(n+2)}{1.2 .3} \nabla^{3} f(3) \\
&=10+9+10+12+41
\end{aligned}
$$

which is the same value are that obtained by substituing $x=4$ in the cubic polynomial above.
Obs. The above example shows that if a tabulated function is a polynomial, then interpolation and extrapolation give the same values.
Lagrange's Interpolation formula for unequal intervals :

$$
f(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots \ldots \cdot \frac{\left(x-x_{n}\right)}{\left(x-x_{1}\right)\left(x_{0}-x_{2}\right) \ldots . .\left(x_{0}-x_{n}\right)}, \frac{1}{n}}{\text { n }}
$$

$$
\begin{aligned}
& y \neq \frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots \ldots .\left(x-x_{n}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \ldots . .\left(x_{1}-x_{n}\right)} \\
& y_{1}+\ldots \ldots \frac{\left(x-x_{n}\right)\left(x-x_{1}\right) \ldots .\left(x-x_{n-1}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{2}\right) \ldots .\left(x_{n}^{x} x_{n-1}\right)}
\end{aligned}
$$

Lagrange's Method for unequally spaced values of \boldsymbol{x} :

$$
\begin{array}{r}
x=\frac{\left(y-y_{1}\right)\left(y-y_{2}\right) \ldots \ldots .\left(y-y_{n}\right)}{\left(y_{0}-y_{1}\right)\left(y_{0}-y_{2}\right) \ldots \ldots .\left(y_{0}-y_{n}\right)}+\frac{\left(y-y_{0}\right)\left(y-y_{2}\right) \ldots \ldots . . .\left(y-y_{n}\right)}{\left(y_{1}-y_{0}\right)\left(y_{1}-y_{2}\right) \ldots \ldots . .\left(y_{1}-y_{n}\right)} \\
+\ldots .+\frac{\left(y-y_{0}\right)\left(y-y_{1}\right) \ldots \ldots \ldots .\left(y-y_{n-1}\right)}{\left(y_{n}-y_{0}\right)\left(y_{n}-y_{1}\right) \ldots \ldots . .\left(y_{n}-y_{n-1}\right)}
\end{array}
$$

Example - 7 :

Use lagrange's interpolation formula to find the value of y when $x=10$, if the following values of $x \& y$ are given.

Solution :

Here	$x_{0}=5$	$x_{1}=6$	$x_{2}=9$	$x_{3}=11$
and	$\mathrm{y}_{0}=12$	$y_{1}=13$	$y_{2}=14$	$y_{3}=16$

Putting $x=10$ and substituting the above value in Lagrange's formula, we get :

$$
\begin{aligned}
& f(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x-x_{0}\right)\left(x-x x_{2}\right)\left(x-x_{1}\right)} \cdot y_{1} \\
& +\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{3}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)\left(x_{2}-x_{3}\right)^{y}}{ }^{2}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)_{1}(x-x)_{2}} y^{3} \\
& f(10)=\frac{(10-6)(10-9)(10-11)}{(5-6)(5-9)(5-11)} \times 12+\frac{(10-5)(10-9)(10-11)}{(6-5)(6-9)(6-11)} \times 13 \\
& +\frac{(10-5)(10-6)(10-11)}{(9-5)(9-6)(9-11)} \times 14+\frac{(10-5)(10-6)(10-9)}{(10-5)(11-6)(11-9)} \times 16 \\
& =\frac{4 \times 1 \times(-1)}{(-1) \times(-4) \times(-6)} \times 12+\frac{5 \times 1 \times(-1)}{1 \times(-3) \times(-5)} \times 13 \\
& +\frac{5 \times 4 \times(-1)}{4 \times 3 \times(-2)} \times 14+\frac{5 \times 4 \times 1}{6 \times 5 \times 2} \times 16 \frac{-48}{-24}+\frac{-65}{-15}+\frac{-280}{-24}+\frac{320}{60} \\
& =2-4.33+11.66+5.33=14.66
\end{aligned}
$$

Example-8:

Apply lagrange's method to find the value of x when $f(x)=15$ from the given data.

x	5	6	9	11
$f(x)$	12	13	14	16

Solution :

Here
$x_{0}=5, \quad x_{1}=6, \quad x_{2}=9, \quad x_{3}=11$
$y_{0}=12, \quad y_{1}=13, \quad y_{2}=14, \quad y_{3}=16$
Taking $\mathrm{y}=15$ and using the above results in Lagrange's inverse interpolation formula.

$$
\begin{aligned}
& x=f(x)=\frac{\left(y-y_{1}\right)\left(y-y_{2}\right)\left(y-y_{3}\right)}{\left(y_{0}-y_{1}\right)\left(y_{0}-y_{2}\right)\left(y_{0}-y_{3}\right)} x_{0}+\frac{\left(y-y_{0}\right)\left(y-y_{2}\right)\left(y-y_{3}\right)}{\left(y_{1}-y_{0}\right)\left(y_{1}-y_{2}\right)\left(y_{1}-y_{3}\right)} \cdot x_{1} \\
& \quad+\frac{\left(y-y_{0}\right)\left(y-y_{1}\right)\left(y-y_{3}\right)}{\left(y_{2}-y_{0}\right)\left(y_{2}-y_{1}\right)\left(y_{2}-y_{3}\right)} x_{2}+\frac{\left(y-y_{0}\right)\left(y-y_{1}\right)\left(y-y_{2}\right)}{\left.\left(y_{3}-y_{0}\right)\left(y_{3}-y_{1}\right)_{1}-y_{2}\right)_{2}} x_{3} \\
&= \frac{(15-13) 1(15-14)(15-16)}{(13-13)(12-14)(12-16)} \times 5+\frac{(15-12) 1(15-14)(15-16)}{(13-12)(13-14)(13-16)} \times 6 \\
&+\frac{(15-12) 1(15-13)(15-16)}{(14-12)(14-13)(14-16)} \times 9+\frac{(15-12) 1(15-13)(15-14)}{(16-12)(16-13)(16-16)} \times 11 \\
&= \frac{2 \times 1 \times(-1)}{(-1) \times(-2) \times(-4)} \times 5+\frac{3 \times 1 \times(-1)}{1 \times(-1) \times(-3)} \times 6+\frac{3 \times 2 \times(-1)}{2 \times 1 \times(-2)} \times 9+\frac{3 \times 2 \times 1}{4 \times 3 \times 2} \times 11 \\
&= \frac{5}{4}-6+\frac{27}{2}+\frac{11}{4}=1.25-6+13.5+2.75=17.5-6=11.5
\end{aligned}
$$

Assignment

1. Find a cubic polynomial which takes the following values

x	0	1	2	3
$f(x)$	1	2	1	10

2. Given the values

x	5	7	11	13	17
y	150	392	1452	2366	5202

Evaluate y_{9} using Lagrange's formula.
3. Given $\sin 45^{\circ}=0.7071$, $\sin 50^{\circ}=0.7660$, $\sin 55^{\circ}=0.8192$ and $\sin 60^{\circ}=0.8660$. Find $\sin 52^{\circ}$ using Newton's forward interpolation formula.

CHAPTER - 6

NUMERICAL SOLUTION OF EQUATION

1. An expression of the form

$$
f(x)=a x_{0}^{\mathrm{n}}+a x_{1}^{\mathrm{n}-1}+\ldots \ldots .+a_{\mathrm{n}-1} x+a_{\mathrm{n}}
$$

where $a_{0}, a_{1}, a_{2}, \ldots \ldots \ldots a_{\mathrm{n}} \mathrm{G} 0$ are constant and n is a positive integer is called a polynomial in x of degree n .
2. The polynomial $f(x)=0$

For example (1) $2 x^{2}+x^{2}-13 x+6=0$
(2) $x^{3}-4 x+9=0$
are called algebraic equation.
3. Transcendental equation -

If $f(x)$ is a functions other than algebraic function such as trigonometric, logarithmic, exponential etc. then $f(x)$ is called transcendental function.
4. Root of an equation -

The value of x which satisfied $f(x)=0$ is called the root of the equation.
Geometrically a root of the equation $f(x)=0 \& y=0$ is the value of x where the graph meet the y-axis.
5. Solution of an equation -

The process of finding a root of an equation is known as the solution of an equation.
6. Different methods to solve the equations.
(a) Analytical method
(b) Graphical method
(c) Numerical method
7. Limitation of analytical method

This methods produce very exact and accurate results. But it fails in many cases such as it fails to find roots of transcendental equation.
8. Limitation of graphical method -

This methods are simple but these methods produce result to a low degree accuracy.
9. Advantages of Numerical method -

This methods are often of a repetitive nature. These consist in repeated execution of the same process. Where each step the result of proceeding step is used. This is known as iteration process and is repeated till the result is obtained to a desired degree of accuracy.

The followings are some Numerical methods to find root of algebraic and transcendental equation -
(1) Bisection method
(2) Newton - Raphson method

Bisection method :

This method consists of locating a root of the equation $f(x)=0$ between a and b . If $f(x)$ is continuous between a and b , and $f(a)$ and $f(\mathrm{~b})$ are of opposite signs then there is a root between a and b . from the graph $f(a)$ is negative and $f(\mathrm{~b})$ is positive then there is a root lies between a and b . The first approximation to the root is

$$
x_{1}=\frac{1}{\frac{1}{2}}(a+b)
$$

if $f(x)=0$, then x_{1} is the root of equation $f(x)=0$. Otherwise the root lies between a and x_{1} or x_{1} and b according to $f\left(x_{1}\right)$ is positive or negative. Then we bisect the interval and continue the process until the root is found to desired accuracy.

In the fig. $1 f\left(x_{1}\right)$ is +ve , so the root lies between a and x_{1}. Then the $2^{\text {nd }}$ approximation to the root is $x_{2}=\frac{1}{2}(a+x)$. If $f(x)$ is -ve , the root lies between x and x. So the third approximation to the root is $x=1(x+x)$ and so on.

Example-1:

(a) Find a root of the equation
$x^{3}-4 x-9=0$ using the bisection method correct to three decimal places.
Solution :

$$
\begin{array}{lllll}
2 & 2.5 & 2.625 & 2.75 & 3 \\
f(2)-\mathrm{ve} & f(2.5)=-\mathrm{ve} & f(2.75)=+\mathrm{ve} & f(3)=+\mathrm{ve}
\end{array}
$$

Let

$$
\begin{aligned}
& f(x)=x^{3}-4 x-9 \\
& f(2)=(2)^{3}-4(2)-9=-9(-\mathrm{ve}) \\
& f(3)=(3)^{3}-4(3)-9=6(+\mathrm{ve})
\end{aligned}
$$

a root lies between 2 and 3 .

First approximate to the root is

$$
\begin{aligned}
& x=\frac{1}{2}(2+3)=2.5 \\
& f\left(x_{1}\right)=(2.5)^{3}-4(2.5)-9=-3.375(-\mathrm{ve})
\end{aligned}
$$

the root lies between x_{1} and 3. The second approximation to the root is

$$
\begin{aligned}
& x_{2}=\frac{1}{2}\left(x_{1}+3\right)=\frac{1}{2}(2.5+3)=2.75 \\
& f\left(x_{2}\right)=(2.75)^{3}-4(2.75)-9=0.7969(+\mathrm{ve})
\end{aligned}
$$

the root lies between 2.5 and 2.75
So $x_{3}=\frac{1}{2}(2.5+2.75)=2.625$
$f(2.625)=(2.625)^{3}-4(2.625)-9=-1.4121(-\mathrm{ve})$
the root lies between 2.625 and 2.75 .
$x_{4}=\frac{1}{2}(2.625+2.75)=2.6875$
Repeating this process, the successive approximation are
$x_{5}=2.71875, x_{6}=2.70313, x_{7}=2.71094, x_{8}=2.70703, x_{9}=2.70508$,
$x_{10}=2.70605, x_{11}=2.70654, x_{12}=2.70642$. Hence the root is 2.7064 .
Example - 2 :
Find the root of the equation $x \log _{10} x=1.2$ which lies between 2 and 3 , using bisection method taking 2 stages.

Solution :

$$
\begin{gathered}
\text { Let } \begin{aligned}
f(x) & =x \log _{10} x-1.2=2 \times \log _{10} 2-1.2 \\
& =2 \times .3010-1.2=-0.5979(-\mathrm{ve}) \\
f(3) & =3 \times \log _{10} x-1.2=0.2314(+\mathrm{ve})
\end{aligned}
\end{gathered}
$$

the root lies between 2 and 3

$$
\begin{aligned}
& x_{1}=\frac{1}{2}(2+3)=2.5 \\
& f(2.5)=2.5\left(\log _{10} 2.5\right)-1.2=-0.205(-\mathrm{ve})
\end{aligned}
$$

the root lies between 2.5 and 3

$$
x_{2}=\frac{1}{2}(2.5+3)=2.75
$$

Hence the root is 2.75 .

Example - 3 :

By using the bisection method, find an approximate root of the equation $\sin x=\frac{1}{x}$, that lies between $x=1$ and $x=1.5$ (measured in radians). Carry out computations upto the 7th stage.

Solution.

Let $f(x)=x \sin x-1$. We know that $\mathrm{V}=57.3^{\circ}$
Since $\quad f(1)=1 \times \sin (1)-1=\sin \left(57.3^{\circ}\right)-1=-0.15849$
and $\quad f(1.5)=1.5 \times \sin (1.5)^{\mathrm{r}}-1=1.5 \times \sin (85.95)^{\circ}-1=0.49625$;
a root lies between 1 and 1.5 .
1
\backslash first approximation to the root is $x_{1}={ }_{2}-(1+1.5)=1.25$.
Then $f\left(x_{1}\right)=(1.25) \sin (1.25)-1=1.25 \sin \left(71.625^{\circ}\right)-1=0.18627$ and $f(1)<0$.
\backslash a root lies between 1 and $x_{1}=1.25$.
Thus the second approximation to the root is $x_{2}=\frac{1}{2}(1+1.25)=1.125$.
Then $f\left(x_{2}\right)=1.125 \sin (1.125)-1=1.125 \sin (64.46)^{\circ}-1=0.01509$ and $\mathrm{f}(1)<0$.
\backslash a root lies between 1 and $x_{2}-1.125$.
Thus the third approximation to the root is $x_{3}=\frac{1}{2}(1+1.125)=1.0625$
Then $f\left(x_{3}\right)=1.0625 \sin (1.0625)-1=1.0625 \sin (60.88)-1=-0.0718<0$ and $f\left(x_{2}\right)>0$, i.e. now the root lies between $x_{4}=1.0625$ and $x_{2}=1.125$.

1
\backslash fourth approximation to the root is $x_{4}=\frac{1}{2}(1.0625+1.125)=1.09375$
Then $f\left(x_{4}\right)=-0.02836<0$ and $f\left(x_{2}\right)>0$, i.e., the root lies between $x_{4}=1.09375$ and $x_{2}=1.125$.
\backslash fifth approximation to the root is $x_{5}=\frac{1}{2}(1.09375+1.125)=1.10937$
Then $f\left(x_{5}\right)=-0.00664<0$ and $f\left(x_{2}\right)>0$.
\backslash the root lies between $x_{5}=1.10937$ and $x_{2}=1.125$.
Thus the sixth approximation to the root is

$$
x_{6}=\frac{1}{2}(1.10937+1.125)=1.11719
$$

Then $f\left(x_{6}\right)=0.00421>0 . \operatorname{But} f\left(x_{5}\right)<0$.
\backslash the root lies between $x_{5}=1.10937$ and $x_{6}=1.11719$.
Thus the seventh approximation to the root is $x_{7}=\frac{1}{2}(1.10937+1.11719)=1.11328$
Hence the desired approximation to the root is 1.11328 .

In this method, instead of taking two initial rough approximations to the root $x=\alpha$ as in the previous two methods, a single rough approximation x_{0} to the root is taken. Then we use the following formula, known as Newton-Raphson formula or Newton iteration formula, to get the successive approximations.

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{1}\left(x_{n}\right)} . \tag{1}
\end{equation*}
$$

Putting $\mathrm{n}=0,1,2$, \qquad .etc. in the above formula (1), we get the first, second, third approximations as follows.

$$
\begin{aligned}
& x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{1}\left(x_{1}\right)} \\
& x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{1}\left(x_{1}\right)} \\
& x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{1}\left(x_{2}\right)}
\end{aligned}
$$

This method is useful in cases of large values of $f^{1}(x)$ i.e., when the graph of $f(x)$ while crossing the x -axis is nearly vertical.

The process of finding successive approximations to the root (i.e., x_{1}, x_{2}, x_{3} etc.) may be continued till the root is found to desired degree of accuracy.
Example-4:
Find by Newton's method, a root of the equation $x^{3}-3 x+1=0$ correct to 3 decimal places.

Solution :

Let

$$
\begin{aligned}
& f(x)=x^{3}-3 x+1 \\
& f(1)-1-3+1=-1 \\
& f(2)=2^{3}-3.2+1=8-6+1=3
\end{aligned}
$$

\rightarrow The root of $f(x)$ lies between $1 \& 2$

Let $x_{0}=1.5$, Also $f(x)=3 x^{2}-3$
Newton's formula gives

$$
\begin{align*}
& x_{n+1}=x_{n}=\frac{f\left(x_{n}\right)}{f^{1}\left(x_{n}\right)}=x_{n} \frac{\left(x_{n}^{3}-3 x_{n}+1\right)}{2 x_{n}^{2}-3} \\
& =\frac{3 x^{3}-3 x-3 x^{3}+3 x-1}{n x_{n}^{2}-3} n=\frac{2 x^{3}-1}{3 x_{n}^{2}-3}
\end{align*}
$$

Putting $\mathrm{n}=0$ in (i), the first approximation x_{1} is given by

$$
x_{1}=\frac{2 x_{0}^{3}-1}{3 x_{0}^{2}-}=\frac{2 \times(1.5)^{3}-1}{{ }^{2} 3}=\frac{2 \times 3.375-1}{3 \times 2.25-3}=\frac{5.75}{3.75}=1.533
$$

Putting $\mathrm{n}=1$ in (i), the second approximation x_{2} is given by

$$
x_{2}=\frac{2 x_{1}^{3}-1}{3 x_{4}^{2}-}=\frac{2 \times(1.533)^{3}-1}{{ }^{2} 3}=\frac{2 \times 3.6026-1}{3 \times 2.35-3}=\frac{6.2052}{4.05}=1.532
$$

Example-5:

Find the Newton's method, the real root of the equation $3 x=\cos x+1$

Solution :

Let

$$
\begin{aligned}
f(x) & =3 x-\cos x-1 \\
f(0) & =-2=-\mathrm{ve}, f(1)=3-0.5403-1=1.4597++\mathrm{ve}
\end{aligned}
$$

So a root of $f(x)=0$ lies between 0 and 1. It is nearer to 1 . Let us take $x_{0}=0.6$.
Also $\quad f(x)=3+\sin x$
\backslash Newton's iteration formula gives

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \quad n-\frac{3 x_{n}-\cos x_{n}-1}{3+\sin x_{n}}=\frac{x_{n} \sin x_{n}+\cos x_{n}+1}{3+\sin x_{n}} \tag{i}
\end{equation*}
$$

Putting $\mathrm{n}=0$, the first approximation x_{1} is given by

$$
\begin{gathered}
x_{1}=\frac{x_{0}}{\underline{\sin } x_{0}+\cos x_{0}+1} 33+\sin x_{0} \\
=\frac{(0.6) \sin (0.6)+\cos (0.6)+1}{3 \sin (0.6)} \\
=\frac{0.6 \times 0.5729+0.82533+1}{3+0.5729}=0.6071
\end{gathered}
$$

Putting $\mathrm{n}=1$ in (i), the second approximation is

$$
\begin{aligned}
x_{2}= & \frac{x_{1} \sin x_{1}+\cos x_{1}+1}{3+\sin x_{1}}=\frac{0.6071 \sin (0.6071)+\cos (0.6071)+1}{3+\sin (0.6071)} \\
& =\frac{0.6071 \times 0.57049+0.8213+1}{3+0.57049}=0.6071 \text { Clearly, } x_{1}=x_{2} .
\end{aligned}
$$

Hence the desired root is 0.6071 correct to four decimal places.

Assignment

1. Find a root of the following equations, using the bisection method correct to three decimal places.
(a) $x^{3}-x-11=0$
(b) $x^{4}-x-10=0$
2. Find by Newton-Raphson method, a root of the following equations correct to 3 decimal places.
(a) $x^{3}-3 x+1=0$
(b) $3 x^{3}-9 x^{2}+8=0$
3. Using Newton-Raphson method to evaluate the following
(a) $\frac{1}{32}$
(b) $\sqrt{41}$
