LESSON PLAN

DEPARTMENT OF ELECTRICAL ENGINEERING, ITT, CHOUDWAR

SUBJECT: Circuit Network Theory Periods: 4+1 per week **SEMESTER:** 3rd

NAME OF FACULTY: Satyajit Pani No. of weeks: 15

Week	Period	Theory / Practical Topics
1st	1 st	1.MAGNETIC CIRCUITS
		1.1 Introduction
	$2^{\rm nd}$	1 . 2 Magnetizing force, Intensity, MMF, flux and their relations
	$3^{\rm rd}$	1 . 3 Permeability, reluctance and permeance
	4 th	1 . 4 Analogy between electric and Magnetic Circuits
	5 th	Tutorial
2 nd	1 st	1.5 B-H Curve
	2 nd	1 . 6 Series & parallel magnetic circuit.
	3 rd	1.7 Hysteresis loop
	4 th	2.COUPLED CIRCUITS:
		2 . 1 Self Inductance and Mutual Inductance
	5 th	Tutorial
3 rd	1 st	2 . 2 Conductively coupled circuit and mutual impedance 2 . 3 Dot
		convention
		2 . 4 Coefficient of coupling
	2 nd	2 . 5 Series and parallel connection of coupled inductors.
	3 rd	2 . 6 Solve numerical problems (Contd.)
	4 th	2 . 6 Solve numerical problems
	5 th	Tutorial
4 th	1 st	3. CIRCUIT ELEMENTS AND ANALYSIS:
	_	3 . 1 Active, Passive, Unilateral & bilateral, Linear & Non linear elements
	2 nd	3 . 2 Mesh Analysis, Mesh Equations by inspection
	3 rd	3 . 3 Super mesh Analysis
	4 th	3 . 4 Nodal Analysis, Nodal Equations by inspection
	5 th	Tutorial
5 th	1 st	3 . 5 Super node Analysis. 3 . 6 Source Transformation Technique
	2 nd	3 . 7 Solve numerical problems (With Independent Sources Only)
	3 rd	4. NETWORK THEOREMS:
	_	4.1 Star to delta and delta to star transformation
	4 th	4.2 Super position Theorem
	5 th	Tutorial
6 th	1 st	4.3 Thevenin's Theorem
<u> </u>	2 nd	4.4 Norton's Theorem
	3 rd	4.5 Maximum power Transfer Theorem.
	4 th	4.6 Solve numerical problems (With Independent Sources Only)(Contd.)
	5 th	Tutorial
7 th	1 st	4.6 Solve numerical problems (With Independent Sources Only)(Contd.)
,	2^{nd}	4.6 Solve numerical problems (With Independent Sources Only)
	3 rd	5. AC CIRCUIT AND RESONANCE:
	3	5.1 A.C. through R-L, R-C & R-L-C Circuit
	4 th	5.2 Solution of problems of A.C. through R-L, R-C & R-L-C series Circuit by complex
	4***	algebra method.
	5 th	Tutorial
8 th	1 st	
8	1	5.3 Solution of problems of A.C. through R-L, R-C & R-L-C parallel & Composite Circuits

	2 nd	5.4 Power factor & power triangle.
	3 rd	5.5 Deduce expression for active, reactive, apparent power.
	4 th	5.6 Derive the resonant frequency of series resonance and parallel resonance
	4	circuit
	5 th	Tutorial
9 th	1 st	5.7 Define Bandwidth, Selectivity & Q-factor in series circuit.
-	2 nd	5.8 Solve numerical problems
	3 rd	6. POLYPHASE CIRCUIT
		6.1 Concept of poly-phase system and phase sequence
	4 th	6.2 Relation between phase and line quantities in star & delta connection
	5 th	Tutorial
10 th	1 st	6.3 Power equation in 3-phase balanced circuit
10	2 nd	6.4 Solve numerical problems
	3 rd	6.5 Measurement of 3-phase power by two wattmeter method.
	4 th	6.6 Solve numerical problems.
	5 th	Tutorial
11 th	1 st	7. TRANSIENTS
11	1	7.1 Steady state & transient state response. (Contd.)
	2 nd	7.1 Steady state & transient state response. (conta.)
	$\frac{2}{3^{\text{rd}}}$	7.2 Response to R-L, R-C & RLC circuit under DC condition. (Contd.)
	4 th	7.2 Response to R-L, R-C & RLC circuit under DC condition. (conta.)
	5 th	Tutorial
12 th	1 st	
12	2 nd	7.3 Solve numerical problems(Contd.)
	3 rd	7.3 Solve numerical problems
	3	8. TWO-PORT NETWORK
	4 th	8.1 Open circuit impedance (z) parameters 8.2 Short circuit admittance (y) parameters
	5 th	Tutorial
13 th	1 st	8.3 Transmission (ABCD) parameters
13	2 nd	
	$\frac{2}{3^{\text{rd}}}$	8.4 Hybrid (h) parameters.
	4 th	8.5 Inter relationships of different parameters.
	5 th	8.6 T and π representation.
1 4th		Tutorial
14 th	1 st	8.7 Solve numerical problems
	2 nd	8.7 Solve numerical problems
	$3^{\rm rd}$	9. FILTERS:
		9.1 Define filter
	4 th	9.2 Classification of pass Band, stop Band and cut-off frequency 9.3 Classification of filters.
	4***	
		9.4 Constant – K low pass filter. 9.5 Constant – K high pass filter.
	5 th	Tutorial
15 th		9.6 Constant – K Band pass filter.
1.5	2 nd	9.7 Constant – K Band plass litter.
	3 rd	9.8 Solve Numerical problems
	3 4 th	9.8 Solve Numerical problems
	5 th	Tutorial
	3	Tutoriai