LESSON PLAN

DEPARTMENT OF ELECTRICAL ENGINEERING, ITT, CHOUDWAR

SUBJECT:CONTROL SYSTEM ENGG Periods: 5 per week **SEMESTER:** 6^{TH}

NAME OF FACULTY: S.Pani No. of weeks: 15

Week	Period	Theory / Practical Topics
1st	1 st	FUNDAMENTAL OF CONTROL SYSTEM
	1	Classification of Control system
	2 nd	Open loop system & Closed loop system and its comparison
	3 rd	Effects of Feed back
	4 th	Standard test Signals(Step, Ramp, Parabolic, Impulse Functions)
	5 th	Servomechanism
2 nd	1 st	MATHEMATICAL MODEL OF A SYSTEM Transfer Function & Impulse response
	2 nd	Properties, Advantages & Disadvantages of Transfer Function
	3 rd	Poles & Zeroes of transfer Function
	4 th	Simple problems of transfer function of network
	5 th	Mathematical modeling of Electrical Systems(R, L, C, Analogous systems)
3 rd	1 st	CONTROL SYSTEM COMPONENTS
3	1	Components of Control System
	2 nd	Gyroscope, Synchros
	3 rd	Tachometer, A C servomotors
	4 th	DC servomotors
	5 th	BLOCK DIAGRAM ALGEBRA & SIGNAL FLOW GRAPHS
		Definition: Basic Elements of Block Diagram
		Canonical Form of Closed loop Systems
4 th	1 st	Rules for Block diagram reduction
	2 nd	Procedure for of Reduction of Block Diagram
	3 rd	Simple Problem for equivalent transfer function
	4 th	Basic Definition in Signal Flow Graph & properties
	5 th	Construction of Signal Flow graph from Block diagram
5 th	1 st	Mason's Gain formula
	2 nd	Simple problems in Signal flow graph for network
	3 rd	TIME RESPONSE ANALYSIS.
		Time response of control system.
	4 th	Standard test Signals(Step, Ramp, Parabolic, Impulse Functions
	5 th	Laplace transforms of different test signals.
6 th	1 st	Time Response of first order system with:
		Unit step response
	2 nd	Unit impulse response.
	3 rd	Time response of second order system to the unit step input.
	4 th	Time response specification.
	5 th	Derivation of expression for rise time, peak time, peak overshoot, settling time and
		steady state error
7^{th}	1 st	Numerical on time domain specifications
	2 nd	Numerical on time domain specifications
	3 rd	Steady state error and error constants
	4 th	Types of control system. [Steady state errors in Type-0, Type-1, Type-2 system]
	5 th	Problems on steady state errors
8 th	1 st	Effect of adding poles and zero to transfer function.

	2 nd	Response with P, PI controller
	$3^{\rm rd}$	Response with PD and PID controller
	4 th	ANALYSIS OF STABILITY BY ROOT LOCUS TECHNIQUE
		Root locus concept.
	5 th	Construction of root loci.
9 th	1 st	Rules for construction of the root locus.
	2^{nd}	Rules for construction of the root locus.
	3 rd	Problems on Root Locus.
	4 th	Problems on Root locus.
	5 th	Effect of adding poles and zeros to G(s) and H(s).
10 th	1 st	FREQUENCY RESPONSE ANALYSIS.
		Correlation between time response and frequency response
	2 nd	Derivation of frequency response specifications
	3 rd	Calculation of Gain Margin and Phase margin of a system
	4 th	Polar plots.
	5 th	Rules to plot polar plot
11 th	1 st	Question solve on polar plots.
	2 nd	Question solve on polar plots.
	3 rd	Calculation of Gain margin and Phase margin from Polar plot.
	4 th	Bode plots.
	5 th	Question solve on bode plot
12 th	1 st	Question solve on bode plot
	$2^{\rm nd}$	All pass and minimum phase system.
	3 rd	Computation of Gain margin and phase margin from Bode plots
	4 th	Problems on Gain margin
	5 th	Problems on Phase margin
13 th	1 st	Log magnitude versus phase plot
	$2^{\rm nd}$	Closed loop frequency response.
	$3^{\rm rd}$	NYQUIST PLOT
		Principle of argument
	4 th	Nyquist stability criterion
	5 th	Nyquist stability criterion applied to inverse polar plot.
14 th	1^{st}	Effect of addition of poles and zeros to G(S) H(S) on the shape of Niquist
		plot.
	2 nd	Assessment of relative stability.
	3 rd	Probles on Nyquist criterion
	4 th	Constant M and N circle
	5 th	Nicholas chart.
15 th	1 st	Previous year Question discussion. & Doubt Clearing Class
	2 nd	Previous year Question discussion. & Doubt Clearing Class
	3 rd	Previous year Question discussion. & Doubt Clearing Class
	4 th	Previous year Question discussion. & Doubt Clearing Class
	5 th	Previous year Question discussion. & Doubt Clearing Class